ligo-ex ligo-ds
  Richardson Lab Experimental Log, Page 4 of 10  Not logged in ELOG logo
New entries since:Wed Dec 31 16:00:00 1969
ID Date Author Type Category Subjectdown
  473   Thu Nov 14 11:58:05 2024 ShaneUpdateCDSTurbo pump connection troubleshooting
Attempted connection to the TV551 turbo pump through Varian/Agilent's software on spica. Successful connection established, and we are able to read out al the readings associated with the pump (status, temperature, etc) through the software, which is actually pretty extensive and well organized. Was able to stop and restart the pump with no issues. Serial communications seem to be working fine, and the current serial settings (baud rate 9600, serial type RS232) all match what the Iolan was expecting with the previous connection test. Also notable: the code used for the previous (failed) connection test is written using 'Letter protocol', which is the older of the two communications protocols supported by these kinds of pumps. This rules out the pump being too old to accept the newer communication format as the issue, since it's the older format being used anyway. Will continue trouble shooting to determine why previous connection test failed.
  225   Thu Sep 14 17:05:38 2023 Shane, JonUpdateCDSTiming chassis setup and testing
Tested the setup today for the timing chassis (intended to provide the timing reference for the CyMAC). Was able to read the correct frequency, but voltage was significantly lower than needed. Still identifying source of problem, and looking into the relationship between the supportable ohm load and the voltage.
  231   Fri Sep 29 17:27:30 2023 Shane, JonUpdateCDSTiming chassis assembly progress (CyMAC)
Worked on timing chassis assembly today for the CyMAC, settled on layout (see attachment 1). Frequency synthesizer and frequency divider tentatively mounted. Next steps involve putting together and installing an LED and DC on/off switch assembly like the one in the binary input chassis (attachment 2 for comparison; orange and black wires in BI chassis analogous to red and black wires in timing chassis). Will also use front and back panels of BI chassis as a template for the timing chassis panels, with the following alterations: two SMB feedthroughs in place of the ribbon cable connections shown on the back panel, the addition of an LED on the front panel to indicate power, and potentially a spot on the front panel for usb connection to programmable frequency synthesizer.
Attachment 1: timing_chassis.jpeg
timing_chassis.jpeg
Attachment 2: BI_chassis.jpeg
BI_chassis.jpeg
  244   Mon Oct 23 18:02:23 2023 Shane, JonUpdateCDSTiming chassis assembly complete
Concluded assembly of timing chassis for CyMAC today; see attachment 1 for interior set up of chassis. Installed front and rear panels, wired on/off switch and LED assembly, and tested to confirm everything is powering on correctly. Also tested the outputted timing reference that will go to DAC and ADC adapter boards (see attachment 2 for output 1 and attachment 3 for output 2).
Attachment 1: timing_chassis_complete.jpeg
timing_chassis_complete.jpeg
Attachment 2: timing_chassis_output_1.jpeg
timing_chassis_output_1.jpeg
Attachment 3: timing_chassis_output_2.jpeg
timing_chassis_output_2.jpeg
  461   Thu Oct 17 13:24:23 2024 ShaneUpdateCDSTiming Chassis issue identified

[Ma, Luis, Shane]

Working theory for the timing chassis issues had been that the 1A breaker was tripping and causing the failure of the Valon 5015 and 3010 to output the timing signal correctly. We just tried bypassing the breaker, running 6 V on the benchtop power supply (set the current limit to 1.5A), with the 5010 generating the sine wave to pass to the 3010. All worked correctly, and there were no issues. Square wave outputted by the 3010 was exactly as desired (image attached) at the correct frequency, and this confirms the issue was the breaker, not the valon 5015. Ready to go ahead with ordering a new replacement breaker.

Attachment 1: IMG_6462.jpeg
IMG_6462.jpeg
Attachment 2: IMG_6464.jpeg
IMG_6464.jpeg
  465   Fri Oct 25 10:56:30 2024 ShaneUpdateCDSTiming Chassis fixed and reinstalled
[Ma, Shane]

We replaced the 1A breaker in the timing chassis today with a 4A one, and tested that all is working well. The chassis successfully outputted the correct signal (image attached). The real time models have also been restarted and the CyMAC diagnostics screen is showing all green flags. Timing chassis has been closed up and reinstalled in the server rack.

Attachment 1: successful_timing.jpeg
successful_timing.jpeg
  458   Tue Oct 15 15:27:38 2024 Xuesi MaUpdateELOGTiming Chassis Update

I conducted separate tests on the '5015' and '3010a'. When powered individually, the '5015' outputs a signal at 33.55 MHz with an amplitude of 608 mV. It draws 1 A of current from the power source. The input signal for the '3010a' is 33.54 MHz with an amplitude of 670 mV (peak-to-peak) and a 15 mV DC offset. The output signal from channel 1 is a 65.5 kHz square wave with an amplitude of 3.28 V. The '3010a' draws 0.1 A of current.

Both the '5015' and '3010a' work fine when powered separately. However, when both are powered together, the power source behaves as if there is a short circuit. The current theory is that the switch or breaker is tripping, as it has a 1 A current rating. Since the combined current demand of both devices exceeds 1 A, this may be causing the issue.

Slides for 10/16/2024 Group Meeting

Attachment 1: 20241015_134152.mp4
Attachment 2: 20241015_133118.png
20241015_133118.png
Attachment 3: 20241015_133124.png
20241015_133124.png
Attachment 4: 20241015_133136.png
20241015_133136.png
Attachment 5: 20241015_133207.png
20241015_133207.png
Attachment 6: 20241015_133543.png
20241015_133543.png
Attachment 7: 20241015_133550.png
20241015_133550.png
Attachment 8: 20241015_133555.png
20241015_133555.png
Attachment 9: 20241015_133300.png
20241015_133300.png
Attachment 10: 20241015_133643.png
20241015_133643.png
Attachment 11: 20241015_134202.png
20241015_134202.png
Attachment 12: 20241015_135353.png
20241015_135353.png
  85   Fri Apr 28 19:00:13 2023 CaoPhysicsVACTighten CF ports on vacuum chamber
[Cao]

After Jon's comment yesterday that some of the connection did not seem to have good metal-metal contact, in particular the gate valve connection, I went through the ConFlat connections today and retighten them. I found a lot of the CF connections are not particularly tightened and there were a lot of range left that can be tightened with the wrench. After re-tightening, the copper gaskets are not visible anymore. For example, see the attached images for the difference before and after tightening.

Note for future installation of CF

  • After tightening the bolts/ screws in jumping order (to provide uniform torque) and there is resistance appearing in further tightening, start going through each screw/ bolts in a direction, each time applying a small torque until it resists to further tightened
  • After each time going all the bolts/ screw and returning to the starting point, one will find they can further tighten the screws/ bolts. Repeat the process until no further tightening can be achieved
  • The copper gasket should not be clearly visible at the connection

Attachment 1: TightenCF.png
TightenCF.png
  159   Mon Jul 17 11:46:24 2023 PamellaUpdateFLIRThermocouple plot.
[Pamella]
  • I collected data to plot a calibration with the heater. I took measurements with current and temperature (the thermocouple - thermometer) to compare with the FLIR measurements.
  • I made a plot with this data and we can see how temperature vs current behaves. Note: This data I measured manually.
Attachment 1: calibration_plot-2.jpeg
calibration_plot-2.jpeg
Attachment 2: calibration_plot-3.jpeg
calibration_plot-3.jpeg
  164   Tue Jul 18 16:12:27 2023 PamellaUpdateFLIRThermocouple plot.
  • I noticed that these measurements have some issues with the weather on different days. We can see in the photo attached below how different the temperatures are on different days, I took the data with the same procedure every day, but we can see the differences between them.
  • To Do: I will do a new data collection using FLIR and thermocouple at the same time to plot comparison between both.

Quote:
[Pamella]
  • I collected data to plot a calibration with the heater. I took measurements with current and temperature (the thermocouple - thermometer) to compare with the FLIR measurements.
  • I made a plot with this data and we can see how temperature vs current behaves. Note: This data I measured manually.

 

Attachment 1: Comp.plot.jpeg
Comp.plot.jpeg
  10   Wed Aug 17 16:04:30 2022 Phoebe ZylaSummaryLoreTesting the Cartridge Heater and Collecting FLIR Data

We have tested the heater to find emissivity, mounted the heater system to the optical table, and have taken irradiance maps of the heater projected onto the screen.

The heater's emissivity was determined by using a thermocouple in conjunction with the FLIR's temperature calibration. To attach the thermocouple to the heater initially, I used Kapton tape and ran both the wires of the heater and the thermocouple through the heater bridge. This allowed for the heater to rest on an optical post and be observed without anyone directly holding it, but there were some measurement issues. The thermocouple had a very wide range of temperatures it was reading, which may have been due to intermittent contact or a short between the two legs of the thermocouple. To solve this and make the temperature measurements more stable, we pried apart the two ends of the thermocouple (to ensure there was no short) and put tape on either side, leaving the end connection bare. This was then taped to the heater, and the thermocouple was much more stable. We also used a K-type thermocouple that has an adhesive tape on it already, which assisted with the intermittent contact as well. With the thermocouple measuring the temperature of the heater, we could point the FLIR directly at the heater and calibrate the emissivity until the FLIR and the thermocouple agreed. Cassidy's emissivity calculator was also used, as I could input a temperature and observe what the emissivity of an area was based on that temperature. We found the emissivity of the heater to be 0.57.

As a note, when observing the heater with the FLIR, it appeared that there was a hot spot in the center, where the Kapton tape sat. Because the Kapton has a different emissivity than the 304 stainless steel of the heater, the FLIR will read it as having a different temperature than it actually does. When using the FLIR in the future, be sure to ascertain whether there is a temperature difference somewhere or if there may be different emissivities.

Additionally, the first heater that I used was taken to a very high temperature and oxidized. The emissivity of this oxidized heater is not known, but could be good information for knowing how oxidation affects these heaters specifically.

To mount the heater system in front of the screen, I used 1/2'' optical posts and the mount I designed using COMSOL's CAD program. The heater was originally 2.5 inches away from the screen, and has since been moved back by an additional two inches so that we could observe the heater side of the screen with the FLIR. We wanted to see what temperature the heater side of the screen was when irradiated by the heater, and how that compared to the camera side of the screen. When the heater ran at 1.12 W of input power, the heater side of the screen had a max temperature of around 29.7 C, and the camera side of the screen read at about 29.5 C. This means that there is very little thermal loss between the two sides of the screen, and any insulation that the screen's adhesive may have is largely negligible. Additionally, the camera was placed at an angle and undetermined distance for these tests, confirming that the temperature measurements compensate well/don’t depend on changes in angle or distance between the camera and the screen. However, there was spots on the back of the screen that the camera was measuring as hot spots where there shouldn’t have been any. I have included an example below. It would be useful to run a test where the camera is directly on the back of the screen without the heater to characterize the screen and see if the hot spots are physically present on the screen or if this is an artifice of the camera because of something like angle of viewing.

Taking irradiance maps of the screen was straightforward. After checking that the emissivity of the screen is 0.99 by viewing it at room temperature, we monitored the max temperature while slowing increasing the wattage the heater was running at. There is not a large change until the heater is at around 95 C, at which point the screen began to rise in temperature from 27 C to 28 C. We took measurements of this while the heater was 2.5 and 4.5 inches away from the screen. The irradiance map has a very symmetrical and circular shape, but does not have the ring pattern that we expected. There may be a few reasons for this: there could be some conduction between the two sides of the screen that is causing the pattern to spread further, the heater setup may not be as ideal as it was modeled to be, or there could be a different, unknown issue.

TO DO:

- It would be useful to run a test of the camera in multiple different positions to ensure our conclusion that the camera’s measurements don’t depend on angle or distance (or that these factors are well accounted for in the current temperature calculations) is correct.

- Measure the back of the screen straight on to identify bright spots and possible reasons as to their appearance.

- Recalibrate camera to ensure it is still correct after testing in multiple positions.

- Take another irradiance map of the screen at a higher input power, as well as moving the heater close/further away to try and replicate the COMSOL irradiance maps. It would be useful to also redo the COMSOL modeling at lower powers and variable distances.

Pictures included of full table setup, the heater mount, the heater with Kapton tape attaching the thermocouple as well as FLIR's measured irradiance map.

Attachment 1: Screenshot_(74).png
Screenshot_(74).png
Attachment 2: Screenshot_(75).png
Screenshot_(75).png
Attachment 3: Screenshot_from_2022-08-15_11-24-40.png
Screenshot_from_2022-08-15_11-24-40.png
Attachment 4: AcquisitionImage(Aug-15-2022_14_16).jpg
AcquisitionImage(Aug-15-2022_14_16).jpg
  275   Tue Nov 21 22:09:44 2023 AidenUpdateGeneralTesting Parts
[Aiden, Luis]

Luis and Aiden vented the chamber today. We closed off the RGA section and then proceeded to open the the vent on the main body after turning off the turbo and backing pump. We then opened the lid and placed in all the stainless steel hardware that will be used in evaluating the FROSTI optics and heater elements. We also inspected the weldments before closing it up. Check the clean and bake data base where there is now a new section outlining the parts in each test. We then closed the lid, tightened the bolts, turned the backing pump back on and let the pressure drop until it was below 1e-1 torr. Then turned the turbo pump back on and after a few hours the pressure was back down to 4.16e-7 torr. The RGA was turned off during all of this and was turned back on when done even though we closed both valves to keep the RGA volume under vacuum.

Attachment 1: IMG_4817.jpg
IMG_4817.jpg
Attachment 2: IMG_4815.jpg
IMG_4815.jpg
Attachment 3: IMG_4816.jpg
IMG_4816.jpg
Attachment 4: IMG_4814.jpg
IMG_4814.jpg
Attachment 5: IMG_4813.jpg
IMG_4813.jpg
Attachment 6: IMG_4812.jpg
IMG_4812.jpg
Attachment 7: IMG_4810.jpg
IMG_4810.jpg
Attachment 8: IMG_4811.jpg
IMG_4811.jpg
  377   Mon Jun 17 11:47:46 2024 LiuInfrastructureGeneralTemporary cooling units for the labs
Below are the temporary cooling units installed last week in labs 1119 and 1129. They are the temp. replacement for the building AC system, which will be shut down during the Physics roof replacement.
Attachment 1: 1119.jpg
1119.jpg
Attachment 2: 1129.jpg
1129.jpg
  407   Mon Jul 15 14:49:06 2024 PooyanUpdateComputersSynology NAS server setup

Installed a Synology NAS server (Synology RackStation RS1221) in lab room 1129, with host name “scribe” and ip “192.168.1.17”. It is mounted on the rack and each of its 8 storage bays has a 2TB SSD disk. It will be used to set up automated backups of all the lab machines (e.g., chimay, logrus, megatron).

One shared storage is set on it with SHR-2 as its RAID type. It can tolerate the failure of two disks and has 10.4TB of total capacity. 

We can use both rsync and dd to create backups of the system. A suggested backup schedule could be daily rsync backups and bi-weekly disk snapshots using dd. 

 

  387   Thu Jun 27 11:09:14 2024 LiuUpdateScripts/ProgramsStraight edge STEP files and ray loss analysis

Drawings and CAD models of the straight-edge designs are exported, and are visualized in SOLIDWORKS. Two are attached. One is a single edge of the evenly spaced polygon design with 16 edges, and the other is the 8x2 design, with two neighboring edges grouped together to replace the original single curved heater.

For the straight edge design in COMSOL, ray power detectors were placed at the heater's front surface. The irradiance is shown in figure. The amount of light rays deposited back to the heater is small when close to the center, where it is closer to the original ring. The ray power increases as we move further away from the center toward the edges. In addition, the total power integrated at the heater's front surfaces is about 21% of the original heater's emitted power. This could account for the power efficiency difference between the straight edge design and the ring design, as shown in plot for instance.

Attachment 1: edge_CAD_8x2_step.PNG
edge_CAD_8x2_step.PNG
Attachment 2: edge_CAD_step.PNG
edge_CAD_step.PNG
Attachment 3: Irradiance_frontheater.png
Irradiance_frontheater.png
Attachment 4: Irradiance_profile.pdf
Irradiance_profile.pdf
  438   Mon Sep 9 21:02:37 2024 LukeUpdateVACSteadystate temperature of flanges

I measured the temperature of the flanges and reconnected the RGA turning on its filament. I then turned off the PID controllers.

Here is a table that has the temperature of the different parts of the vacuum chamber.

Electronics Temperature (C)
Pressure gauge (Main volume) 81
Main turbo pump 67
RGA 53
Pressure gauge (RGA volume) 60
Cal leak 48
Mini tubo pump 46
Pirani gauge (1.33") 46
conical nipple (2.75") 82
Lid 112
Barrel lower 125
Barrel upper 122
RGA volume 125
Bottom of chamber 117
  129   Tue Jun 20 22:14:24 2023 Pamella, CaoInfrastructureVACShort term testing of vacuum heater controller units
[Pamella, Cao]

Fuse replacement

  • Replace blown 10A fuse in ucontroller outside cleanroom
  • Replace 10 A fuse in main power connection slot of the controller unit inside cleanroom
  • Pamella wiped down unit outside cleanroom.
  • Controller units turned on and temperature setpoint set to be 80 deg C
  • Temperature settle in approx. 15 minutes(as recorded by the RTD). No problems with fuses observed
  • Recording of pressure gauges (in Torr) :
    1. Before turning heater on :
      1. Gauge 1(main chamber): 3.73E-7
      2. Gauge 2(RGA line): 3.65E-7
      3. Gauge 3(Pump line): 3.8E-4
    2. After 15 minutes :
      1. Gauge 1(main chamber): 7.07E-7
      2. Gauge 2(RGA line): 6.12E-7
      3. Gauge 3(Pump line): 3.8E-4
  • Reduce setpoint temperature to 60 deg C due to Pinrani gauge (Gauge 3) temperature limit
  • Upon returned to lab to reduce temperature (35 minutes after turned on):
    1. Gauge 1(main chamber): 1.22E-6
    2. Gauge 2(RGA line): 9.98E-7
    3. Gauge 3(Pump line): 3.8E-4
  • Once temperature has settled to 60 C (approx 20 mins after changing setpoint), pressure readout showed:
    1. Gauge 1(main chamber): 1.37E-6
    2. Gauge 2(RGA line): 1.10E-6
    3. Gauge 3(Pump line): 3.8E-4
  • Heater left on for the whole afternoon, pressure readout upon returning to lab at 5:30 pm:
    1. Gauge 1(main chamber): 3.43E-6
    2. Gauge 2(RGA line): 2.61E-6
    3. Gauge 3(Pump line): 3.8E-4

  322   Tue Feb 13 04:05:32 2024 MichaelUpdateInterferometer SimulationsShoelaces 1 Layout Simulated in GTrace
I've worked on and have completed a first simulation of Cosmic Explorer's Shoelaces 1 layout. This is based off of Pooyan's original work with Gtrace much like the Long Crab 1 layout I worked on last week. This layout will allow me to quickly created the alternate shoelaces layouts. I've included an image of the dxf, and a desmos model for reference.
Attachment 1: shoelaces1_dxf.JPG
shoelaces1_dxf.JPG
Attachment 2: shoelaces1_desmos.JPG
shoelaces1_desmos.JPG
  163   Tue Jul 18 16:04:26 2023 PamellaUpdateFLIRSetup FLIR with black wall (black body)
[Pamella]
  • Today I tried get data the heater with the black screen but doesn't looks possible have just one "energy" point straight to FLIR camera. Tyler and I tried different current and temperatures but keep very bad data. I attached a snap below.
  • I attached a photo about the new setup below. The FLIR is in the most close point possible/safety with the heater. The heater is very close to the black wall but is not touch the screen so is safety.
Attachment 1: AcquisitionImage(Jul-18-2023_15_24).jpg
AcquisitionImage(Jul-18-2023_15_24).jpg
Attachment 2: IMG_8721.jpeg
IMG_8721.jpeg
Attachment 3: IMG_8722.jpeg
IMG_8722.jpeg
  419   Fri Aug 2 13:50:22 2024 ShaneUpdateCDSSerial Comm. Test (Agilent Turbo Pump)
Did a brief communication test with the agilent turbo pump today, to see if we could get serial communications up and running for it. Used a simplified python script with sockets package to establish a connection and send a simple command to query the pump's operational status. The connection was successful, and had no issues establishing. The command also sent successfully, and received a response. The response didn't make sense, though, as all the possible statuses correspond to integers 0-7, and this test returned the integer 15. Need to troubleshoot some more to figure out why it's returning nonsense values. Possible match-up issue with the way the information is being encoded on each end? At the very least, connection and command sending are both working fine, and this showed that the pin-out connections we were assuming (image attached) are correct for basic connection to work.
Attachment 1: pinouts.jpeg
pinouts.jpeg
  358   Mon Apr 8 14:43:29 2024 PooyanUpdateInterferometer SimulationsSIS update single and coupled cavities
[Pooyan, Cynthia]

Attached is a brief recap PDF file. A video file showing separate HOMs plots for the cavity scan with ETM08 surface map is also attached.

The codes are available at https://git.ligo.org/uc_riverside/hom-rh/-/tree/main/SIS

Attachment 1: IFOSim_SIS__update_4_8_24.pdf
IFOSim_SIS__update_4_8_24.pdf
Attachment 2: Screen_Recording_2024-03-31_at_2.46.29_AM.mov
  381   Mon Jun 24 14:28:51 2024 Cynthia UpdateInterferometer SimulationsSIS cavity with thermal effect
tried to run a cavity scan with thermal deformation and ring heater for ITM04 ETM08 (aLIGO mirrors). Not sure about the accuracy of the graph as there is some commands that still need to verified.
Attachment 1: ETM08thermal.png
ETM08thermal.png
  444   Mon Sep 23 08:29:49 2024 LukeUpdateInterferometer SimulationsRingheater update

Ringheater Update

If the link does not work here is the file.

Attachment 1: 20240923_Update.pptx
  423   Mon Aug 12 16:35:30 2024 Luke Update Ringheater modeling Update
Attachment 1: HR_surface_deformation.png
HR_surface_deformation.png
Attachment 2: Irradiation_pattern_input.png
Irradiation_pattern_input.png
Attachment 3: HR_surface_deformation_other.png
HR_surface_deformation_other.png
  452   Wed Oct 2 12:05:42 2024 Luke Update Ringheater modeling Update

Power point slides

  430   Tue Aug 27 18:37:40 2024 LukeUpdateInterferometer SimulationsRingheater model update
Updated the model to produce a more circular deformation in the HR surface. The first three attachments are from irradiance patterns gotten from ray tracing. The last is from a pre-defined irradiance pattern.
Attachment 1: Initial_1W.png
Initial_1W.png
Attachment 2: Increased_rays_100W.png
Increased_rays_100W.png
Attachment 3: Increased_rays_more_100W.png
Increased_rays_more_100W.png
Attachment 4: Initial_100W.png
Initial_100W.png
  439   Mon Sep 16 07:28:16 2024 LukeUpdateInterferometer SimulationsRing heater update
Attachment 1: 20240916_Ringheater_updates.pptx
  403   Sat Jul 13 15:09:04 2024 LukeUpdateGeneralRing heater COMSL model update

After the feedback from last meeting and Liu's help narrowing down what I should do to improve the model. I made some changes: First with Liu's help I made the proportions of the test mass and ring heater much more reasonable and parametrized by constants. Second from Cao's paper "FROSTI Nonimaging Reflector Design" Liu showed me what I should do to define the elliptical mirrors. Third during Friday's modeling/programming meeting walked me through getting the different irradiance plots to work. 

Attachment 1: image_2024-07-13_150654436.png
image_2024-07-13_150654436.png
Attachment 2: image_2024-07-13_150704735.png
image_2024-07-13_150704735.png
Attachment 3: image_2024-07-13_150716079.png
image_2024-07-13_150716079.png
Attachment 4: image_2024-07-13_150726593.png
image_2024-07-13_150726593.png
  342   Tue Feb 27 03:26:28 2024 MichaelUpdateInterferometer SimulationsReverse aLIGO Layout Created in Gtrace
I've created the simulation for reverse aLIGO layout in gtrace. Attached are the desmos model and the output dxf file. From here Pooyan and I plan to create a brief report of our progress to the CE optical design group.
Attachment 1: reverse_aligo_desmos.JPG
reverse_aligo_desmos.JPG
Attachment 2: reverse_aligo_dxf.JPG
reverse_aligo_dxf.JPG
  344   Wed Feb 28 12:02:08 2024 TylerUpdateGeneralResistors for Heater Elements Update
Power Res (Ohm) RTD Res (Ohm)

Heater 1= 72.8; 80.6

Heater 2= 69.5; 80.8

Heater 3= 70; 83.2

Heater 4= 70.6; 78.7

Heater 5= 69.9; 80.6

Heater 6= 71.1; 78.2

Heater 7= 68.5; 76.8

Heater 8= 70.1; 82.8

Quote:
Power Res (Ohm) RTD Res (Ohm)

Heater 1= 73.6; 81.8

Heater 2= 70.4; 82.1

Heater 3= 71; 84.5

Heater 4= 71.5; 80

Heater 5= 70.5; 81.7

Heater 6= 72; 79.4

Heater 7= 69.2; 78.2

Heater 8= 71.1; 84.2

 

  307   Wed Jan 17 15:47:49 2024 AidenUpdateGeneralResistors for Heater Elements
Power Res (Ohm) RTD Res (Ohm)

Heater 1= 73.6; 81.8

Heater 2= 70.4; 82.1

Heater 3= 71; 84.5

Heater 4= 71.5; 80

Heater 5= 70.5; 81.7

Heater 6= 72; 79.4

Heater 7= 69.2; 78.2

Heater 8= 71.1; 84.2

  170   Mon Jul 24 14:55:53 2023 JonUpdateVACRemoved extension power cable
I removed the extension cable that was powering the leftmost heater controller, since there is no bake currently happening. It is currently powering the LED over the electronics bench, and can be removed if needed. I will be ordering more extension cords to permanentize our setups.
  466   Tue Oct 29 16:37:35 2024 TylerUpdateElectronicsRed Pitaya OS Update

The Red Pitaya ecosystem has been upgraded to OS 2.00-35, with a key feature being greater freedom in adjusting the sampling frequency for signal analysis. Before, decimation factors could only be applied if they were a power of 2 (i.e 2,4,8,16,...) up to 65536. Now, the factors can be any power of two up to 16, and any whole number greater than 16 up to 65536. Further information can be found here.

  78   Tue Apr 25 11:56:37 2023 JonUpdateVLC ElectronicsRed Pataya has arrived
The Red Pataya 125-14 starter kit that we ordered for locking the 532 nm cavity has arrived. I left it laying on the optical table near the laser.
Attachment 1: Red_Pataya.jpg
Red_Pataya.jpg
  366   Mon May 13 13:03:41 2024 TylerUpdateFLIRReadout Code Updates
[Tyler]

Some changes have been made to the FLIR readout code to help improve its functionality:

  • More accurate temperature readings than before due to updates in the calculation procedure. A bug was causing one of the parameters to not update correctly; this is now fixed.
  • Saved data now stored in HDF5 files rather than CSV.
  • User can now enable automatic data storage by specifying a collection interval (in minutes). The choice of manually saving data is still present if desired.
Below is an image of the graphical interface. This is an old screenshot. Visually, there is no difference between the older and newer version. The differences come from the list above, which help the user more reliably measure and store data for later analysis.

Attachment 1: AcquisitionImage(Jul-18-2023_15_24).jpg.png
AcquisitionImage(Jul-18-2023_15_24).jpg.png
  313   Fri Feb 2 16:56:56 2024 JonUpdateCDSRTS model implemented for FROSTI RTD readouts

Summary

Today I finished implementing an RTS model to read out the integrated FROSTI RTDs (temperature sensors) via the CyMAC. The model is named "MSC" and is located at cymac:/opt/rtcds/usercode/models/c1msc.mdl. We successfully tested it with the heater elements operating in vacuum at low power (12 VDC), finding them to reach an average steady-state temperature of 160 C.

From the cymac host, the MEDM control screen can be accessed with the terminal command "sitemap" (from any directory).

Measurement Technique

Each FROSTI heater element [299] contains an internal two-wire RTD placed near the front emitting surface, which enables the temperature of the blackbody emitter to be directly monitored. From the measured temperature and the emissivity of the uncoated aluminum nitride surface (known to be ~1 in the IR), the radiated source-plane power can also be estimated.

The resistance of each RTD is measured via a ratiometric technique. The RTDs are powered in series with a 1 kΩ reference resistor located inside the readout chassis [305], whose temperature is not changing. The signal is obtained by taking the ratio of the voltage difference across each individual RTD to the voltage difference across the reference resisitor. The advantage of this technique is that the ratio of  the voltage differences is insensitive to changes in the current through the resistors (since they are all in series; see [271] for wiring diagram).

Implementation Detail

The signal flow is shown in Attachment 1. The eight RTD signals enter through ADC channels 0-7, along with the reference resistor signal on channel 8. The first set of filter modules apply a calibration gain to convert the signals from raw ADU counts to units of input-referred voltage. The ratio of each RTD signal to the reference resistor signal is then taken. The second set of filter modules multiply the voltage-difference ratios by the resistance of the reference resistor, 1 kΩ ± 0.01%, to obtain the RTD resistances in physical units of ohms.

Finally, a freeform math module is used to invert the quadratic relation between each RTD's resistance and temperature. The final signals passed to the third set of filter modules are the RTD temperatures in physical units of degrees C. The temperatures of the tungsten RTDs are estimated assuming TCR coefficients of A=0.0030 C-1 (±10%) and B=1.003E-6 C-2, which were provided by the manufacturer.

One DAC channel is used to provide the excitation voltage for the RTD measurement, which is visible on the far right of the control screen. At its maximum output voltage of +10 V, the DAC can drive a maximum current of 10 mA.

Attachment 1: sitemap_screen.png
sitemap_screen.png
  305   Tue Jan 16 12:20:21 2024 TylerConfigurationElectronicsRTD Readout Chassis Update 2

I performed another continuity test on the RTD chassis wiring, and everything seems to be set up correctly. The chassis should be ready for installation.

Quote:

Below is the current state of the RTD readout chassis wiring. Initial continuity tests seem good, will run through one more time to confirm.

Quote:

The custom front and rear panels for the RTD readout chassis arrived last Friday. I installed them in the chassis frame to check their fit. They fit very well, so all that now remains is to complete the internal wiring and test the connections.

The chassis panel designs are archived to LIGO-D2300452 and LIGO-D2300453.

Quote:

Below are a basic diagram of what the RTD measurement circuit logically looks like and an example schematic of the actual wiring. The schematic wiring will be placed internally into a chassis, connected to the RTDs via DB25 cable.

Note: The DB25 Breakout Board connector is Female, not Male.

 

 

Attachment 1: IMG_8146.jpg
IMG_8146.jpg
Attachment 2: IMG_8147.jpg
IMG_8147.jpg
  300   Tue Jan 9 12:08:59 2024 TylerConfigurationElectronicsRTD Readout Chassis Update

Below is the current state of the RTD readout chassis wiring. Initial continuity tests seem good, will run through one more time to confirm.

Quote:

The custom front and rear panels for the RTD readout chassis arrived last Friday. I installed them in the chassis frame to check their fit. They fit very well, so all that now remains is to complete the internal wiring and test the connections.

The chassis panel designs are archived to LIGO-D2300452 and LIGO-D2300453.

Quote:

Below are a basic diagram of what the RTD measurement circuit logically looks like and an example schematic of the actual wiring. The schematic wiring will be placed internally into a chassis, connected to the RTDs via DB25 cable.

Note: The DB25 Breakout Board connector is Female, not Male.

 

Attachment 1: IMG_8105.jpg
IMG_8105.jpg
  364   Thu May 2 22:43:36 2024 TylerUpdateElectronicsRTD Readout Chassis Redesign
[Tyler, Jon]

Today the FROSTI RTD readout chassis underwent a redesign:

Instead of the original ratiometric method, which involved wiring the FROSTI RTDs in series, each element is individually powered by separate excitations. Each element additionally possesses its own reference resistor of 100 Ohm. Now, if an RTD experiences an electrical short, it should not affect the measurements of the others in sequence, as it had with the original design.

Attachment 1: IMG_9013.jpg
IMG_9013.jpg
  298   Fri Dec 29 16:02:27 2023 JonConfigurationElectronicsRTD Readout Chassis

The custom front and rear panels for the RTD readout chassis arrived last Friday. I installed them in the chassis frame to check their fit. They fit very well, so all that now remains is to complete the internal wiring and test the connections.

The chassis panel designs are archived to LIGO-D2300452 and LIGO-D2300453.

Quote:

Below are a basic diagram of what the RTD measurement circuit logically looks like and an example schematic of the actual wiring. The schematic wiring will be placed internally into a chassis, connected to the RTDs via DB25 cable.

Note: The DB25 Breakout Board connector is Female, not Male.
Attachment 1: front.jpeg
front.jpeg
Attachment 2: rear.jpeg
rear.jpeg
Attachment 3: overhead.jpeg
overhead.jpeg
  351   Thu Mar 21 16:56:42 2024 TylerUpdateDAQRTD Parameter Calibration
[Jon,Tyler]

We noticed that the RTD temperature readings given on the Cymac were off, and traced the issue to miscalibration in the relationship between the resistance and temperature of each RTD (Callendar-Van Dusen eqn). Below is the table of values inferred from independent measurements of temperature and resistance to rectify this problem. This data was then fitted to better determine the coefficients present in the temperature-resistance relation:

       R_0 (ohm)   Alpha    Beta

RTD 0   80.8674   0.001315   4.273e-6

RTD 1   79.5704   0.001887   3.7873e-6

RTD 2   81.7334   0.002014   2.1724e-6

RTD 3   74.3060   0.003677   3.6022e-8

RTD 4   81.1350   0.001761   2.3598e-6

RTD 5   77.9610   0.002423   -7.5192e-7

RTD 6   78.7980   0.001373   6.2909e-6

RTD 7   83.8616   0.001890   3.3529e-6

Attachment 1: RTD_Calib-2.png
RTD_Calib-2.png
Attachment 2: IMG_8569.jpg
IMG_8569.jpg
  354   Mon Mar 25 10:55:33 2024 TylerUpdateDAQRTD Parameter Calibration
Refitted RTD calibration, neglecting quadratic term:

       R_0 (ohm)   Alpha (1/C)

RTD 0   79.3962   0.002031

RTD 1   78.2874   0.002530

RTD 2   80.9775   0.002381

RTD 3   74.2947   0.003684

RTD 4   80.3199   0.002157

RTD 5   78.2106   0.002297

RTD 6   76.6825   0.002438

RTD 7   82.6645   0.002458


Measurements taken can be found here. An uncertainty of 1 C was assumed for temperature.

Quote:
[Jon,Tyler]

We noticed that the RTD temperature readings given on the Cymac were off, and traced the issue to miscalibration in the relationship between the resistance and temperature of each RTD (Callendar-Van Dusen eqn). Below is the table of values inferred from independent measurements of temperature and resistance to rectify this problem. This data was then fitted to better determine the coefficients present in the temperature-resistance relation:

       R_0 (ohm)   Alpha    Beta

RTD 0   80.8674   0.001315   4.273e-6

RTD 1   79.5704   0.001887   3.7873e-6

RTD 2   81.7334   0.002014   2.1724e-6

RTD 3   74.3060   0.003677   3.6022e-8

RTD 4   81.1350   0.001761   2.3598e-6

RTD 5   77.9610   0.002423   -7.5192e-7

RTD 6   78.7980   0.001373   6.2909e-6

RTD 7   83.8616   0.001890   3.3529e-6

 

Attachment 1: RTD_Calib_nobeta.png
RTD_Calib_nobeta.png
  355   Tue Mar 26 13:51:56 2024 TylerUpdateDAQRTD Parameter Calibration

Another re-fit, but this time the quadratic coefficient (beta) is set to 1.003e-6:

       R_0 (ohm)   Alpha (1/C)

RTD 0   79.7386   0.001863

RTD 1   78.6248   0.002359

RTD 2   81.3254   0.002211

RTD 3   74.6127   0.003509

RTD 4   80.6652   0.001988

RTD 5   78.5450   0.002127

RTD 6   77.0144   0.002268

RTD 7   83.0204   0.002288

Quote:
Refitted RTD calibration, neglecting quadratic term:

       R_0 (ohm)   Alpha (1/C)

RTD 0   79.3962   0.002031

RTD 1   78.2874   0.002530

RTD 2   80.9775   0.002381

RTD 3   74.2947   0.003684

RTD 4   80.3199   0.002157

RTD 5   78.2106   0.002297

RTD 6   76.6825   0.002438

RTD 7   82.6645   0.002458


Measurements taken can be found here. An uncertainty of 1 C was assumed for temperature.

Quote:
[Jon,Tyler]

We noticed that the RTD temperature readings given on the Cymac were off, and traced the issue to miscalibration in the relationship between the resistance and temperature of each RTD (Callendar-Van Dusen eqn). Below is the table of values inferred from independent measurements of temperature and resistance to rectify this problem. This data was then fitted to better determine the coefficients present in the temperature-resistance relation:

       R_0 (ohm)   Alpha    Beta

RTD 0   80.8674   0.001315   4.273e-6

RTD 1   79.5704   0.001887   3.7873e-6

RTD 2   81.7334   0.002014   2.1724e-6

RTD 3   74.3060   0.003677   3.6022e-8

RTD 4   81.1350   0.001761   2.3598e-6

RTD 5   77.9610   0.002423   -7.5192e-7

RTD 6   78.7980   0.001373   6.2909e-6

RTD 7   83.8616   0.001890   3.3529e-6

 

 

Attachment 1: Screenshot_2024-03-26_at_1.23.27_PM.png
Screenshot_2024-03-26_at_1.23.27_PM.png
  416   Mon Jul 29 13:39:16 2024 TylerUpdateDAQRTD Parameter Calibration
[Tyler]

Using the data taken during the FROSTI testing at Caltech, I attempted to find a better calibration of the RTD sensors, given our past issues with inaccurate readings. The fit parameters, alpha and beta, are still all different from the initial values given to us by Fralock (alpha = .003, beta = 1.003e-6, R_0 was not given), but the true values will differ based on factors such as part geometry.

Quote:
Refitted RTD calibration, neglecting quadratic term:

       R_0 (ohm)   Alpha (1/C)

RTD 0   79.3962   0.002031

RTD 1   78.2874   0.002530

RTD 2   80.9775   0.002381

RTD 3   74.2947   0.003684

RTD 4   80.3199   0.002157

RTD 5   78.2106   0.002297

RTD 6   76.6825   0.002438

RTD 7   82.6645   0.002458


Measurements taken can be found here. An uncertainty of 1 C was assumed for temperature.

Quote:
[Jon,Tyler]

We noticed that the RTD temperature readings given on the Cymac were off, and traced the issue to miscalibration in the relationship between the resistance and temperature of each RTD (Callendar-Van Dusen eqn). Below is the table of values inferred from independent measurements of temperature and resistance to rectify this problem. This data was then fitted to better determine the coefficients present in the temperature-resistance relation:

       R_0 (ohm)   Alpha    Beta

RTD 0   80.8674   0.001315   4.273e-6

RTD 1   79.5704   0.001887   3.7873e-6

RTD 2   81.7334   0.002014   2.1724e-6

RTD 3   74.3060   0.003677   3.6022e-8

RTD 4   81.1350   0.001761   2.3598e-6

RTD 5   77.9610   0.002423   -7.5192e-7

RTD 6   78.7980   0.001373   6.2909e-6

RTD 7   83.8616   0.001890   3.3529e-6

 

 

Attachment 1: RTD_Recal_params.png
RTD_Recal_params.png
Attachment 2: RTD_recal_plots_fin.png
RTD_recal_plots_fin.png
  271   Mon Nov 20 10:10:50 2023 TylerConfigurationElectronicsRTD Logic/Schematic Diagrams

Below are a basic diagram of what the RTD measurement circuit logically looks like and an example schematic of the actual wiring. The schematic wiring will be placed internally into a chassis, connected to the RTDs via DB25 cable.

Note: The DB25 Breakout Board connector is Female, not Male.
Attachment 1: FIN_RTD_circuit.png
FIN_RTD_circuit.png
Attachment 2: Sample_Circuit_Schematic.png
Sample_Circuit_Schematic.png
  310   Tue Jan 23 12:17:41 2024 TylerUpdateElectronicsRTD Chassis

After updating the wiring in the RTD Chassis, a signal is now seen at each ADC input. However, there seems to be a discrepancy between the voltages I measured out with the multimeter (see below). Next steps include:

  • Finish final debugging
  • Calibrate ADC inputs with known voltage source (likely to use DAC).

Voltage Readings:

RTD 1: 0.576 V

RTD 2: 0.578 V

RTD 3: 0.598 V

RTD 4: 0.563 V

RTD 5: 0.477 V

RTD 6: 0.463 V

RTD 7: 0.456 V

RTD 8: 0.491 V

Reference Resistor: 5.463 V

Total Voltage: 9.665 V

Attachment 1: rtd_updated_circuitry.jpg
rtd_updated_circuitry.jpg
  311   Tue Jan 30 11:36:19 2024 TylerUpdateElectronicsRTD Chassis

Quote:

After updating the wiring in the RTD Chassis, a signal is now seen at each ADC input. However, there seems to be a discrepancy between the voltages I measured out with the multimeter (see below). Next steps include:

  • Finish final debugging
  • Calibrate ADC inputs with known voltage source (likely to use DAC).

Voltage Readings:

RTD 1: 0.576 V

RTD 2: 0.578 V

RTD 3: 0.598 V

RTD 4: 0.563 V

RTD 5: 0.477 V

RTD 6: 0.463 V

RTD 7: 0.456 V

RTD 8: 0.491 V

Reference Resistor: 5.463 V

Total Voltage: 9.665 V

 

After further modification of the RTD readout chassis (i.e. adding resistors, placing reference resistor in front of RTDs), here are the following direct measurements:

RTD 1: 0.484 V

RTD 2: 0.486 V

RTD 3: 0.503 V

RTD 4: 0.474 V

RTD 5: 0.495 V

RTD 6: 0.483 V

RTD 7: 0.476 V

RTD 8: 0.510 V

Reference: 5.847 V


Here are the Cymac signal readings:

RTD 1: 74

RTD 2: 67

RTD 3: 73

RTD 4: 45

RTD 5: 82

RTD 6: 75

RTD 7: 70

RTD 8: 71

Reference: 884


The one (possible) discrepancy here is the readout for RTD 4 via Cymac, since it's signal reading is ~30 counts lower than the others. I do not believe this is a wiring issue due to the direct measurements taken.

  264   Mon Nov 13 11:07:50 2023 TylerUpdateVACRTD Analysis

After initial analysis from last week on a single RTD, I then extended to looking at all 8 in series with R_ref (set to 1 kOhm). Shown below are the edge cases for the setup:

  • RTDs are all at ambient lab temperature. This would correspond to a minimum resistance value.
  • RTDs all read out 400 C. This gives the maximum resistance value.

The results show that indeed only a few mA of current is drawn even at room temperature (a little above 5.5 mA), and this will continue to decrease with increasing temperature. The voltage across a single terminal, at a maximum, is only about 5.4 V.

Attachment 1: Screenshot_2023-11-13_at_11.05.45_AM.png
Screenshot_2023-11-13_at_11.05.45_AM.png
Attachment 2: Screenshot_2023-11-13_at_11.06.04_AM.png
Screenshot_2023-11-13_at_11.06.04_AM.png
  457   Wed Oct 9 13:52:31 2024 TylerUpdateTCSRIN Update 10/09/2024

I tried adjusting the gain settings on the photodetectors to check if this would help improve the RIN spectra measurements. Overall, it doesn't look like it does, and if anything, looks worse. I assume this is so because as the gain is lowered, the amount of detectable signal from the FROSTI becomes smaller and smaller.

Attachment 1: RIN_plots_CH0.pdf
RIN_plots_CH0.pdf
  470   Wed Nov 13 14:03:32 2024 TylerUpdateElectronicsRIN Update
[Tyler]

We've added two low-pass filters in hopes of reducing any potential aliasing that may be introducing additional noise into the power spectra for the RIN measurements. It still looks like the noise levels are too high. Attached below are some recent measurements taken with the FROSTI powered on and off.

Attachment 1: IMG_0463.jpg
IMG_0463.jpg
Attachment 2: CH0_CH1_ASDs.pdf
CH0_CH1_ASDs.pdf
ELOG V3.1.3-7933898