ligo-ex ligo-ds
  Richardson Lab Experimental Log, Page 9 of 10  Not logged in ELOG logo
ID Date Author Type Category Subjectdown
  233   Sat Oct 7 17:10:27 2023 AidenUpdateClean & BakeClean and Bake Batch 18
Bagged and tagged the parts from Batch 17 and placed them in the clean room on the optic table. Also started an aluminum batch of parts that included the kf clamps and the heater mounting parts.
  232   Tue Oct 3 15:07:48 2023 AidenUpdateClean & BakeClean and Bake Batch 17
Cleaned and baked all the stainless steel parts in Batch 17. Check data base for more details on this.
  227   Thu Sep 28 15:17:13 2023 AidenUpdateClean & BakeClean and Bake Batch 16
Bagged and Tagged the parts from batch 15 and started baking batch 16 which includes the 6" to 8" reducer.
  224   Tue Sep 12 15:31:31 2023 AidenUpdateClean & BakeClean and Bake Batch 15
Cleaned and Baked the SS screws for the heater mount. Check the Clean and Bake data base on the website to get a precise list of the parts and their numbers. Cleaned them with liquinox in the ultra sonic washer for 10 minutes. Then dried them with nitrogen. Then put the stainless steel parts into the oven for the following steps; 1. Ramp to 100 C in 15 minutes 2. Dwell at 100 C for 30 minutes 3. Ramp to 200 C in 30 minutes 4. Dwell at 200 C for 48 hours 5. Turn off
Attachment 1: IMG_4647.jpg
IMG_4647.jpg
  126   Fri Jun 16 17:40:28 2023 AidenUpdateClean & BakeClean and Bake Batch 14
Cleaned and Baked the new and 2.75" copper gaskets for the vacuum system. Cleaned them with liquinox in the ultra sonic washer for 10 minutes. Then dried them with nitrogen. Then put the copper parts into the oven for the following steps; 1. Ramp to 100 degC in 15 minutes 2. Dwell at 100 degC for 30 minutes 3. Ramp to 175 degC in 30 minutes 4. Dwell at 175 degC for 24 hours 5. Turn off Also bagged and tagged the parts from Batch 13 and placed them into the clean room on the computer table.
Attachment 1: IMG_4441.jpg
IMG_4441.jpg
Attachment 2: IMG_4440.jpg
IMG_4440.jpg
  121   Tue Jun 13 13:25:05 2023 AidenSummaryClean & BakeClean and Bake Batch 13
Cleaned and Baked the new 1.33" and 2.75" blanks for the vacuum system. Cleaned them with liquinox in the ultra sonic washer for 10 minutes. Then dried them with nitrogen. Then put the two stainless steel parts into the oven for the following steps; 1. Ramp to 100 degC in 15 minutes 2. Dwell at 100 degC for 30 minutes 3. Ramp to 200 degC in 30 minutes 4. Dwell at 200 degC for 48 hours 5. Turn off
  77   Mon Apr 24 17:38:45 2023 AidenSummaryGeneralClean and Bake Batch 12
Today I Bagged and tagged the o-rings from batch 11 and placed them inside the clean room. I also cleaned batch 12 parts in liquinox for 10 minutes and them placed them into the oven where they will undergo the following steps; 1. Ramp to 100 degC in 15 min. 2. Dwell at 100 degC for 30 min. 3. Ramp to 200 deg C in 30 min. 4. Dwell at 200 deg C for 48 hours. 5. Off
Attachment 1: IMG_4269.jpg
IMG_4269.jpg
Attachment 2: IMG_4268.jpg
IMG_4268.jpg
  23   Tue Feb 7 17:27:30 2023 AidenPhysicsELOGClean and Bake Batch #1
Cleaned SS parts with liquinox for 20 min. Then put in oven for 5 steps; 1. Ramp, 100 degC, 15 min 2. Const, 100 degC, 30 min 3. Ramp, 200 degC, 30 min 4. Const, 200 degC, 48 hours 5. Ramp, 25 degC, (off) PS. Ultrasonic washer does not have heating feature.
  356   Wed Mar 27 00:03:57 2024 PooyanUpdateComputersChimay relocation to Physics 1129

[Jon, Pooyan]

Moved Chimay from the server rack in Physics 1119 to a new rack in Physics 1129. It is connected to the switch in that rack and has the same ip address as before.

All services are up and running.

It appears that JupyterHub creates some processes whenever a user connects to an instance of it, but in some cases does not stop those processes after the user is not using that instance. This results in having lots of running idle processes, each using a small bit of the resources. Those processes are killed now as a result of rebooting. It might be a good idea to manually restart JupyterHub (or the whole machine) every few months to avoid this.

Attachment 1: Chima_front.jpg
Chima_front.jpg
Attachment 2: Chimay_back.jpg
Chimay_back.jpg
  437   Mon Sep 9 14:27:36 2024 PooyanInfrastructureComputersChimay backup attempt

One ongoing work is to make all lab machines automatically backed-up on Scribe on a daily basis. The updates should be boatable and stored for some time (potentially a few weeks) on Scribe. Making whole disk images has already been tried for some of the machines with no problems. (e.g., Cymac and WorkStations)

The same thing can not be done with Chimay though, as it currently has one huge RAID-controlled volume that stores all the information (OS, home directories, and NDS-downloaded data). Creating daily full disk images of such a system is not practical. 

Here is the plan we came up with to overcome this issue:

  1. Create one full disk image of Chimay and store it on Scribe (it was already done)
  2. Move the nds-downloaded raw data temporarily to Scribe and remove it from Chimay
  3. Make another full disk image of Chimay
  4. Burn this image to a single disk and boot chimay with it
  5. Restore the rest of Chimay disks and move the NDS data back

     

On the weekend (Sat and Sun 9/7-8) I tried to execute these steps. There wasn't enough free space left on Scribe to move all the NDS data to it, so I stored part of this data temporarily on WS4. Then I also checked storage-consuming directories and, in one case, removed some non-important stored files. As there was no free space left on Scribe to execute step no. 3, I initiated storing the image on WS3. Unfortunately, a couple of different trials of the image-creation process failed as there was not enough free space on WS3 to accommodate Chiamy image as well. I was not able to reduce the image size such that it can be stored on WS3. 

 

These are the options left for us to get this work done. 

  1. Distribute the NDS files between different machines to make enough free space on Scribe for the image and then follow the previous plan
  2. Shrink the Chimay drive size, create the image and then follow the previous plan
  3. Temporarily transfer some services to Megatrone (Network gateway, Wiki, elog) and recreate chimay and its services from scratch
  171   Mon Jul 24 16:19:29 2023 Shane, JonUpdateElectronicsChassis semi-assembled and moved
Began assembly on AA and AI chassis today, moved them both to top work bench shelf (image attached). They are delicate so please do not disturb them or put anything on top of them.
Attachment 1: IMG_8386.pdf
IMG_8386.pdf
  95   Tue May 9 20:55:12 2023 JonInfrastructureVACCalibrated Ar leak rate

For future reference, the calibrated Argon source has a leak rate of 7.55E-8 atm cc/s, or equivalently 5.74E-8 torr L/s. This can be used to calibrate RGA scans to units of physical leakage (outgassing) rate.

Attachment 1: VTI-Calibrated-Ar-Leak.jpeg
VTI-Calibrated-Ar-Leak.jpeg
  353   Sun Mar 24 11:50:37 2024 AidenUpdateClean & BakeCal Tech FROSTI Parts
Bagged the FROSTI legs and feet after the conclusion of the clean and bake. They are double bagged and sitting in the flow bench.
  326   Tue Feb 13 13:02:41 2024 PooyanUpdateInterferometer SimulationsCacity sacn of Fabry-Perot
Created a simple model of Fabry-Perot cavity in SIS, and did a cavity scan. Total power in the cavity, 00 mode, and HOMs is measured.
Attachment 1: IFOSim_update_2_13_24.pdf
IFOSim_update_2_13_24.pdf
  402   Thu Jul 11 21:01:37 2024 JonInfrastructureGeneralCable tray installed in 1129
Today I installed a 10' cable tray in 1129, for permanently routing Ethernet lines to the workstations. It is securely bolted to C-channels in the side wall and in the center cable tray.
Attachment 1: IMG_1395.png
IMG_1395.png
Attachment 2: IMG_1396.png
IMG_1396.png
  418   Tue Jul 30 07:42:47 2024 JonInfrastructureGeneralCable tray installed in 1119
Yesterday I installed another 5' cable tray in 1119, for permanently routing Ethernet lines to the L-bench. It is securely bolted to the top of the electronics rack, on one end, and to the top of the glass-door storage cabinet, on the other. This eliminates the need for the cable ramp which previously sat behind the rack.
Attachment 1: cable_tray_1119.jpg
cable_tray_1119.jpg
  44   Mon Mar 6 15:32:58 2023 JonInfrastructureGeneralCabinet installation completed

Jon, Cao, Peter

This morning Facilities delivered and installed two new cabinets with sliding glass doors.

The smaller of the two (36" W x 13" D x 84" H) has been installed in the Clean & Bake area adjacent the flow bench. The larger one (48" x 16" D x 84" H) has been installed in the back of the room next to the electronics bench. Both cabinets have been securely anchored to the wall in two places each for earthquake safety.

We also installed the sliding glass doors and leveled them. However, we have not installed any of the shelves yet because the cabinets are quite dirty from the installation. Everything needs to be wiped down with IPA wipes, and it will be easier to do that before the shelves are in place.

Attachment 1: IMG_0088.jpg
IMG_0088.jpg
Attachment 2: IMG_0089.jpg
IMG_0089.jpg
  303   Mon Jan 15 22:29:34 2024 JonInfrastructureGeneralCabinet installation & lab clean-up completed

[Jon, Tyler, Aiden, Shane, Pooyan, Michael, Cynthia, Luke]

On Wednesday, we completed long list of work towards making the new lab (1129) fully operational and enabling the next phase of FROSTI testing. 

Cabinet Installation

Three new VWR cabinets with sliding glass doors were installed in 1129. Each unit measures 48" (W) x 22" (D) x 84" (H) and sits along the back wall (see attachment 1). The 350-lb. cabinets were laid in place by Facilities on Monday and permanentized on Wednesday. Work included:

  • Earthquake anchoring to the masonry wall
  • Sliding glass doors leveled
  • Shelving installed
  • Wiping down of interior and exterior surfaces with IPA wipes

Server Rack Installation

A new Tripp Lite 42U open-frame rack was laid in place in 1129 and anchored to the floor (see attachment 1). This rack will house all of our general-purpose and simulation computers, which will be relocated from the 1119 rack at a later time.

Lab Clean-Up

Following installation of the new cabinets and rack, we proceeded to organize and clean both labs. Work included:

  • Moved parts and equipment into permanent storage in 1129 cabinets
  • Wiped down surfaces in 1119 and 1129 with polypropylene IPA wipes
  • HEPA-vacuumed floors of 1119 and 1129
  • Mopped floor in 1119 with Liquinox solution
  • Installed new sticky mats in 1119 and 1129
  • Regular cleanroom cleaning and particle counts (see 302)
  • Positioned new stainless steel gowning bench outside the cleanroom (see attachment 2)

At this point, the only piece of lab equipment still to be delivered is a HEPA garment cabinet for reusing our (semi-disposable) bunny suits. It is schedule to arrive in mid-February and will sit outside the cleanroom in 1119, in the former location of the HEPA flow bench.

Attachment 1: 1129.png
1129.png
Attachment 2: 1119.png
1119.png
  376   Fri Jun 14 13:32:13 2024 LiuUpdateScripts/ProgramsCOMSOL simulation on rectangular heater elements design

I have been looking at the feasibility of an alternative heater element design for FROSTI that replaces the original ring-like heater elements with n rectangular elements with straight edges. They form an n-sided regular polygon that could well approximate the original annular ring if n is large enough. This eliminates curved surfaces requirement for the heater elements, which was the source of the many month production delay for the prototype parts.

This design was implemented in COMSOL, shown in the attached. From the face on view, each element has a trapezoid shape with straight edges. The edges between neighboring elements are parallel, with a space of 2 mm in between them.

The ray tracing and thermal analysis obtained from COMSOL are shown in the attached pdf.

In particular, the 2D irradiance profiles were obtained from the ray tracing (so far from the front heating surfaces only). The 1D radial profiles were integrated and shown in the attached. The power delivery efficiency for the original ring-like heater element design is integrated to be roughly 65%, for comparison. The plot also shows the radial irradiance profiles for three different straight-edge designs, which correspond to 16 edges, 18 edges, and 24 edges. We see that with the straight-edge designs, the irradiance profiles stay in a good Gaussian shape. In addition, with a larger number of edges, the power efficiency increases, but is always less than the case for the optimized ring-like design.

The thermal distortions for the TM were also obtained from COMSOL, using the irradiance profiles at the TM HR. As shown in the attached, with the straight-edge design, the effects on the thermal lens OPD and the HR surface deformation are similar to the ring design, but with less severe edge roll-off for instance.

Attachment 1: rayIllu_full.png
rayIllu_full.png
Attachment 2: rayIllu_side.png
rayIllu_side.png
Attachment 3: rayIllu_zoom.png
rayIllu_zoom.png
Attachment 4: thermal_distortions.png
thermal_distortions.png
Attachment 5: results.pdf
results.pdf
Attachment 6: Irradiance_profile.png
Irradiance_profile.png
  380   Fri Jun 21 11:47:30 2024 LiuUpdateScripts/ProgramsCOMSOL simulation on alternative straightened heater elements design

In the previous post, we saw that for the heater element design with straight edges in replacement of the current eight-element ring-like design, it provides the similar Gaussian-like irradiance profiles, but with smaller power delivery efficiencies, as shown in the plot. This turned out to result in similar but less prominent thermal effects.

They only differ from the original baseline design by a source power rescaling, however, as shown in the plot, where we see the power-rescaled irradiance profiles for the straight edge designs are close to that for the ring design. The resulting temperature profiles and thermal distortions are shown in plot and plot. The thermal effects for the 16 straight-edge design with renormalized source power for instance are strikingly similar to that for the original ring design.

An alternative straightened heater element design has also been investigated with COMSOL FEA simulation. As shown in the attached, in this new design each heater element component is cut with multiple straight edges but remains connected, shown in the same colors (green and red). In the example, four straight edges are cut from each of the four heater components (4x4=16 edges in total). There is no spacing between the neighboring edges from the same element component, but the edges from different components are separated by 2mm, as can be seen in the attached. This new N-in-one straight edge design offers similar irradiance compared to that for the evenly-spaced N-sided regular polygon straight edge design with the same number of edges, as shown in the plot. It however has fewer heater components, four in this case, which makes it easier to implement in assembly and wiring, and less vulnerable to electrical and thermal shorts with their fewer heater element pins.

Attachment 1: rayIllu_side_new.png
rayIllu_side_new.png
Attachment 2: rayIllu_full_new.png
rayIllu_full_new.png
Attachment 3: Irradiance_profile.pdf
Irradiance_profile.pdf
Attachment 4: Irradiance_profile_norm.pdf
Irradiance_profile_norm.pdf
Attachment 5: temp_profile.pdf
temp_profile.pdf
Attachment 6: thermal_distortions.pdf
thermal_distortions.pdf
  375   Mon Jun 10 14:52:38 2024 TylerUpdateFLIRCIT FROSTI Analysis Update
[Tyler]

Upon further inspection, one adjustment was made to the FROSTI profile analysis: changing the transmission value of the ZnSe viewport. It was initially assumed that the viewport possessed an AR coating, which would bring the transmission into the 90% range. Without the coating, it drops to roughly 70%. Assuming no coating, the estimated delivered power was calculated to be 11.7 W. This is consistent with the estimated power given from the Hartmann sensor analysis, thus it is believed that the viewport indeed had no coating.

Quote:
[Tyler]

Attached below are the initial results of the CIT FROSTI testing analysis.

 

Attachment 1: FROSTI_HR_Temperature_Difference-7.png
FROSTI_HR_Temperature_Difference-7.png
  394   Fri Jul 5 14:12:32 2024 LiuUpdateInterferometer SimulationsCE BS Mechanical Resonances
The butterfly and drumhead mechanical modes for the aLIGO BS were calculated in COMSOL. The resonant frequencies for the two acoustic modes are 2.45 kHz and 3.61 kHz, matching the results in reference for instance.

For a quick projection for the resonant frequencies going from aLIGO to CE, the height and width of the BS are increased assuming the mass is increased from 14 kg to 70 kg, while keeping the aspect ratio fixed. The resonant frequencies for the two mechanical modes as a result becomes smaller, to 1.43 kHz and 2.11 kHz respectively, risking getting in the detection band.

Next step is to implement a mechanical ring with high stiffness outside the BS barrel to combat the decrement of the resonant frequencies of the relevant mechanical modes.

Attachment 1: butterfly.png
butterfly.png
Attachment 2: drumhead.png
drumhead.png
  321   Tue Feb 13 01:26:30 2024 PeterUpdateInterferometer SimulationsCARM Power Simulations
Cao's simulations of the circulating power and gouy phase through a single arm cavity of the interferometer have been reproduced. Images of the plots can be shown in the pdfs attached. There are approx. 400 lines in this code (scenario_3_carm) that produces these plots. This code also calls on a separate code source file (thermal_models) that defines many of the functions used in this main simulation. The thermal_models file consists of over 1000 lines. More work needs to be done to fully understand and document the scripts.
Attachment 1: Scenario_3_CARM.pdf
Scenario_3_CARM.pdf
Attachment 2: Scenario_3_CARM_Gouy.pdf
Scenario_3_CARM_Gouy.pdf
  199   Wed Aug 9 17:35:26 2023 ShaneUpdateCDSBinary output chassis finished
Finished the internal wiring for the binary output chassis today, which completes its assembly. Also secured ribbon cables and chassis lid with their respective screws. Note: one of the spade lugs' internal metal piece is a little loose and had to be reinserted after falling out once. Seemed secure after this, and I checked continuity on everything and it was all good.
Attachment 1: IMG_8685.jpeg
IMG_8685.jpeg
Attachment 2: IMG_8686.jpeg
IMG_8686.jpeg
  211   Wed Aug 16 17:17:02 2023 Shane, JonUpdateCDSBinary input chassis powering correctly
Binary input chassis passed power-on test, and is lighting up as expected. Binary output chassis also successfully powered on. AA and AI chassis not powering on correctly, need to do some debugging to find the problem.
Attachment 1: IMG_9253.jpeg
IMG_9253.jpeg
  197   Tue Aug 8 17:03:22 2023 Shane, JonUpdateCDSBinary input chassis finished
Finished assembly of the binary input chassis today, including DC on/off switch and LED installation. external cable assemblies still needed, but internal work done.
Attachment 1: IMG_8681.jpeg
IMG_8681.jpeg
  80   Thu Apr 27 09:48:34 2023 AidenSummaryGeneralBatch 12 Bagging
I took batch 12 out of the oven and put them in a bag and placed the bag inside the clean room in the first large stainless steel container. I also looked at the small gauge that we felt like needed to be baked and I can confirm that without further cleaning around the inside of the gauge it should not be connected to the main vacuum. I have attached a photo of the inside of the gauge.
Attachment 1: IMG_4279.jpg
IMG_4279.jpg
Attachment 2: IMG_4278.jpg
IMG_4278.jpg
  327   Fri Feb 16 18:37:28 2024 JonUpdateVACBake ended 6:23 pm

I ended the bake of the UHV system (that began on Monday) at 6:23 pm today by switching OFF both PID controllers. The heaters elements were run at max power (24 V DC / 200 mA per element) during this bake, and I left them powered at the same level.

At the time, the instrument readings were as follows:

  • Left high-limit controller: 138 C
  • Right high-limit controller: 128 C
  • Left PID controller: 100 C
  • Right PID controller: 100 C
  • Main volume pressure: 8.17e-7 Torr
  • RGA volume pressure: 4.63e-7 Torr
  25   Fri Feb 10 15:15:30 2023 AidenUpdateGeneralBagging First Batch
Aiden Bagged and Tagged the first batch of stainless steel parts shown on the google spread sheet. 1. Removed two parts from the oven. 2. Place them in the ESD bag. 3. Seal bag with Kapton Tape. 4. Create label including part name and number underneath it. 5. Put label onto the side of the bag where it is not sealed with tape. 6. Placed bagged items into clean room on work table. ps. total bags in first batch = 4
  324   Tue Feb 13 12:26:23 2024 TylerUpdateInterferometer SimulationsBS Code Update

I reproduced Cao's CE beamsplitter code (see below for example plots). I received the current info on the beamsplitter parameters for A+ and A# from GariLynn also. The next steps are to perform a similar power loss analysis on the anticipated A# beamsplitter.

Attachment 1: thickness1.pdf
thickness1.pdf
Attachment 2: bs_opd_homloss_h6cm_w2cm.pdf
bs_opd_homloss_h6cm_w2cm.pdf
  396   Mon Jul 8 10:39:14 2024 XuejunUpdateFLIRAverage Temperature Profile

After taking data for each of the individual heater elements, I imported them into python and overlayed them to produce an average temperature profile. I rotated the 7 of the elements to align with element 1's profile and averaged them out. By setting the range to 28C - 33C (this gave the best visibility of the heating pattern) it gave the profile attached.

Attachment 1: Average-Temperature-Profile.pdf
Average-Temperature-Profile.pdf
  191   Thu Aug 3 18:03:42 2023 Shane, JonUpdateCDSAnti-Aliasing chassis complete
We finished installing the internal power supply cables in the anti-aliasing chassis today, which concludes its assembly. Work on AI, BI, BO chassis still underway.
Attachment 1: IMG_8544.jpeg
IMG_8544.jpeg
  154   Thu Jul 13 15:31:21 2023 JonUpdateGeneralAnt traps placed around lab

In response to reports that ants have been observed in the lab, I placed five ant bait traps around the room today. Each is sitting on the floor on top of a piece of aluminum foil, in areas unlikely to be inadvertently stepped on. They contain liquid which will spill out if picked up, so please take care not to disturb them.

  155   Thu Jul 13 16:59:03 2023 JonUpdateGeneralAnt traps placed around lab

Update: After seeing the strong response to the first set, I redistributed them to the hottest spots and added one more trap.

Quote:

In response to reports that ants have been observed in the lab, I placed five ant bait traps around the room today. Each is sitting on the floor on top of a piece of aluminum foil, in areas unlikely to be inadvertently stepped on. They contain liquid which will spill out if picked up, so please take care not to disturb them.

 

  63   Tue Apr 4 16:43:53 2023 JonUpdateVLC ElectronicsAdditional Thorlabs PDA10A2
I ordered a second PDA10A2 and mounting post + spacer (which puts the aperture at the VLC's standard 3" beam height). These arrived today and I delivered them to the lab. They are sitting on the VLC table near the laser.
Attachment 1: PDA10A2.png
PDA10A2.png
  14   Wed Dec 14 18:34:33 2022 JonConfigurationElectronicsAdapter for 532 nm laser power supply
I installed an EU-to-US plug adapter for the 532nm laser's 9V power supply. I then re-measured the laser's power with the correct supply voltage (previously we had been using a 6V supply). At 9V, the max power is 0.83 W, so the laser is confirmed to be Class 2 as labeled.
Attachment 1: laser_power.png
laser_power.png
  142   Mon Jul 3 16:26:21 2023 CaoInfrastructureDAQAccess and control Red Pitaya remotely and run it on local machine
[Cao]

To access and control the Red Pitaya using Python locally on a machine within the local network, one should follow these steps:

  1. Start the SCPI server. This is achieved by first log onto the Red Piatay page

    rp-xxxxxx.local/ 
  2. Go to Development >> SCPI server and turn the server on. (Note : The server is currently running)
  3. Communication with Red Piataya is done through PyVista, install PyVista with:
     sudo pip3 install pyvisa pyvisa-py 
    This has been installed on Chimay. Ensure that you have pip3 install, if not, you can install it using:
     sudo apt-install python3 pip 
  4. To start talking to the RedPitaya, ensure you have the scipt
     redpitaya_scpi.py 
    in your local folder. This is the standard class that you will import to your code to establish connection with the Red Pitaya. This code can be found in directory
     ~/RedPiatya 
     or this link
    

  399   Tue Jul 9 18:19:50 2024 ShaneUpdateCDSADC-DAC loopback testing and IOLAN installation
[Shane, Jon]

Finished ADC-DAC loopback testing today (see attached xlsx file or access directly here). All looks well with the first 8 channels, with the gain hovering just under 2. Also edited c1msc model in simulink to add channels 7-15 (the last 8 channels), and changed the rate back to 64K. See image 1 for the updated c1msc model. The last 8 channels are also looking good and show no problems, with slightly more scattering for the gain, but all values very close to 2.

We also installed the new eight-channel Perle IOLAN SDS8 terminal server today. Image attached.

NOTE: When we were installing it, we noticed an energized wire dangling from the 24V power supply. Has since been fixed and put back into place.

Attachment 1: iolanServerTerminal.jpeg
iolanServerTerminal.jpeg
Attachment 2: ADC-DAC_Loopback_Testing.xlsx
Attachment 3: updatedc1msc.jpeg
updatedc1msc.jpeg
  410   Tue Jul 16 18:43:07 2024 ShaneUpdateCDSADC-DAC loopback testing and IOLAN installation
UPDATE: Follow up ADC-DAC loopback testing now complete, matching all the ADC channels to a single DAC channel, and then matching all the DAC channels to a single ADC channel (see attached xlsx file or access directly here). Also note c1msc model file has been updated to include the second set of 16 ADC channels. The newly added channels also have their own filter modules, but those are not needed for anything other than the loop-back testing and can now be deleted if we don't want to keep them.

Quote:
[Shane, Jon]

Finished ADC-DAC loopback testing today (see attached xlsx file or access directly here). All looks well with the first 8 channels, with the gain hovering just under 2. Also edited c1msc model in simulink to add channels 7-15 (the last 8 channels), and changed the rate back to 64K. See image 1 for the updated c1msc model. The last 8 channels are also looking good and show no problems, with slightly more scattering for the gain, but all values very close to 2.

We also installed the new eight-channel Perle IOLAN SDS8 terminal server today. Image attached.

NOTE: When we were installing it, we noticed an energized wire dangling from the 24V power supply. Has since been fixed and put back into place.

 

Attachment 1: Follow-up_ADC-DAC_Loopback_Testing.xlsx
  285   Mon Dec 4 21:27:53 2023 ShaneUpdateCDSADC-DAC loopback test results
Here are the test results from today's ADC-DAC loopback tests. Channels 14 and 15 were the only ones behaving abnormally. Not sure what the issue is, but needs further debugging. The DAC output was as expected for both of them, but the corresponding ADC inputs were the same regardless of what offset was used (hovering around values of -4 and -5). NOTE: all measurements listed in the attached table are 'averages' in the sense that the ADC inputs and DAC outputs hovered around the listed values, changing by +1 or -1.
Attachment 1: adc-dac_loopback_testing_results.pdf
adc-dac_loopback_testing_results.pdf
  176   Thu Jul 27 14:46:55 2023 Shane, JonUpdateElectronicsAA chassis DC on/off switch assembled
Made the first DC on/off switch assembly today and installed in anti-aliasing chassis. Second switch assembly to be completed later.
  247   Fri Oct 27 15:28:30 2023 ShaneUpdateCDSAA and AI chassis for CyMAC powered on and functional
CyMAC updates: Switched out the faulty power regulator boards in the Anti-Aliasing and Anti-Imaging chassis. Both chassis are now powering up correctly with lights on and the correct voltages in/out of the power regulator board. Images attached. All chassis for the CyMAC now functional, so next step is mounting everything in the rack.
Attachment 1: AI_chassis_lights_on.jpeg
AI_chassis_lights_on.jpeg
Attachment 2: AA_chassis_lights_on.jpeg
AA_chassis_lights_on.jpeg
  209   Tue Aug 15 16:10:06 2023 CelesteUpdateTCS8/15/2023 Simulation Progress
Attachment 1: Simulation_Progress__1_32nd_Model_(2).pdf
Simulation_Progress__1_32nd_Model_(2).pdf
  204   Fri Aug 11 10:57:20 2023 CelesteUpdateTCS8/11/23 Simulation Progress
Attachment 1: Simulation_Progress__1_32nd_Model_(1).pdf
Simulation_Progress__1_32nd_Model_(1).pdf
  200   Thu Aug 10 14:13:38 2023 CelesteUpdateTCS8/10/23, Simulation Graphical Progress
Attachment 1: Simulation_Progress__8_10_23.pdf
Simulation_Progress__8_10_23.pdf
  88   Mon May 1 18:56:57 2023 PeterUpdateVLC Electronics532nm Intensity Measurement
I've configured the two PDA's to the Red Pitaya. I put a 50 ohm resistor connector to each red pitaya input port. This was because the oscilloscope showed that the voltage reading from the P polarization PDA was almost at 1V, which was the limit of the red pitaya. Once both S and P polarization PDA's were connected, I opened the red pitaya's oscilloscope. A screenshot of the voltage readings is shared below. Channel 1 (Yellow) is for S polarization. Channel 2 (Green) is for P polarization. It would seem that there is a significant amount of polarization in the P direction as opposed to the S direction. I then tried running the template time series measurement within the python notebook from channel 1 only. The python notebook graph is shown below. I have not figured out what are the units of time on the x axis, and I have not figured out how to change the amount of time that the red pitaya takes data. A plot of the time series measurement is shown below.
Attachment 1: graphs.jpg
graphs.jpg
Attachment 2: Time_Series_Trial_1.png
Time_Series_Trial_1.png
  89   Tue May 2 15:55:33 2023 PeterUpdateVLC Electronics532nm Intensity Measurement
I changed the 1/2 wave plate from the lens mount to the rotational optic mount. This allowed me to rotate the 1/2 wave plate, which changed the respective polarization power transmitting through S and P polarization. Initially, more power was coupled into the P polarization. Now, with the 1/2 plate rotated, both channels are experiencing the same voltage reading. Before feeding the PDA signals into the red pitaya, a 50 ohm terminator had to be placed at the SMA connection port so that the input power into the red pitaya did not exceed 1V. With this configuration, both channels experience about 0.35mV. (See attached) I then opened the Jupyter notebook, and ran a demo time series measurement from the red pitaya. This time, I was able to get a plot featuring both channels (green is P polarization. Blue is S polarization). The plots are consistent with what is shown in the red pitaya oscilloscope. However, the time collection (I'm assuming) only runs for about 0.018s. I will have to write some of my own code to loop over this measurement, and collect more data.
Attachment 1: IMG-0221.jpg
IMG-0221.jpg
Attachment 2: IMG-0222.jpg
IMG-0222.jpg
Attachment 3: graphs(1).jpg
graphs(1).jpg
Attachment 4: Time_Series_Trial_2.png
Time_Series_Trial_2.png
  92   Thu May 4 14:01:10 2023 PeterUpdateVLC Electronics532nm Intensity Measurement
I adjusted the rotational mount of the wave plate to see if the power can be 100% coupled into either S or P polarization. The images shown below of the oscilloscope indicate that this is not possible. The minimum transmitted power we can obtain in either S or P polarization is 75mV. The maximum voltage we obtain in either S or P polarization is ~ 740mV. This means that at a maximum, we can obtain ~ 90% polarization in either direction, indicating that our laser has a slightly elliptical polarization.
Attachment 1: graphs(3).jpg
graphs(3).jpg
Attachment 2: graphs(2).jpg
graphs(2).jpg
  99   Tue May 16 11:56:33 2023 PeterUpdateVLC Electronics532nm Intensity Measurement
With the configuration the exact same as before, I used the Jupyter notebook in the red pitaya's development package to collect data from both input channels. Last week, I was able to take data, yet only for a very short period of time, and I did not know how to change it. I went online to the red pitaya's user manual to figure out how to change the sampling period for longer. The link to the page is here: https://redpitaya.readthedocs.io/en/latest/appsFeatures/examples/acqRF-samp-and-dec.html#s-rate-and-dec Though I now know how to change the period of time for which data is taken, the maximum amount of time is still only about 8 seconds. So with help from Cao, we looped over the data taking samples, and got a mean value for each iteration. We then put all those mean values in an array, and plotted it. Below, we see a plot of both the S and P polarizations, and a sum of both of them. As seen in the graph, I have set the time to be able to take data for almost 2 minutes. There is some slight drift in the respective intensities. The next steps I believe are to convert the units into watts, and take data for longer periods of time.
Attachment 1: Time_Series_Trial_3.png
Time_Series_Trial_3.png
  101   Thu May 18 14:07:08 2023 PeterUpdateVLC Update532nm Intensity Measurement
I figured out a method in which to capture power measurements including the initial seconds in which the beam is first turned on. I first clear and restart the kernel of the python notebook. Then I run the command to connect the red pitaya oscilloscope package to the input data being taken in both channels. To my understanding, this allows for data acquisition as the code compiles. I then started looping the 1.074s trigger bunches, and then roughly 2 seconds after I ran that command, I went and turned on the laser. The first plot shown is a 2 minute practice trial of me trying this technique to make sure that the python package was correctly registering the input of the red pitaya. It is clear that initially the laser is off, and then as I turned it on, the voltage in each channel spikes, which is compelling evidence that the code is working. I then set the data collection to be 7518 seconds (7000 loops), which is about 2 hours and 5 minutes. I repeated the same technique as for the first plot, only changing the amount of time I collected data. The second plot shown here is the voltage being read in each channel as a function of time. As we can see, over a period of hours, the intensity drifts quite dramatically for the first several minutes, and then begins to stabilize slightly. However, there are still some strong sudden fluctuations in each channel.
Attachment 1: Time_Series_Trial_4.png
Time_Series_Trial_4.png
Attachment 2: Time_Series_Trial_5_2hrs.png
Time_Series_Trial_5_2hrs.png
ELOG V3.1.3-7933898