ligo-ex ligo-ds
  Richardson Lab Experimental Log, Page 5 of 10  Not logged in ELOG logo
New entries since:Wed Dec 31 16:00:00 1969
ID Date Author Type Category Subjectdown
  477   Wed Nov 20 12:59:37 2024 TylerUpdateElectronicsRIN Update
I went ahead and compared the noise spectrum of the ADC to those of the photodetectors with the FROSTI on and off. As discussed last meeting, it looks like the measurements with the Red Pitaya (RP) are limited by the ADC noise floor. Another avenue to explore in this measurement could be switching to the cymac ADCs.
  422   Mon Aug 12 16:24:34 2024 TylerUpdateCleanroomRIN Measurement Update 1
[Tyler]

For some preliminary tests, I moved the IR photodetectors outside of the cleanroom and onto the other optical table. The basic goal was to obtain a signal from both photodetectors. To achieve this, one of the heater cartridges used for early FLIR measurements months ago was hooked up to a power supply (PS). The PS was set to supply 0.20 A with a voltage of 2.8 V; the corresponding power is thus 0.56 W. With this, I was able to measure a signal using the Red Pitaya, the device that will be used for following RIN measurements.

Quote:
[Tyler]

I have begun moving parts into the cleanroom for the upcoming FROSTI RIN tests that will be conducted within the next few weeks. While waiting for the rest of the equipment to arrive to perform the full-scale tests, I have additionally moved the FROSTI under the shelf above the optical table, where it will stay for the meantime. As always, please use caution when in the cleanroom. Aside from the FROSTI, the IR photodetectors that will be used for the test are delicate and costly to replace.

 

  417   Mon Jul 29 14:30:16 2024 TylerUpdateCleanroomRIN Measurement Set-up
[Tyler]

I have begun moving parts into the cleanroom for the upcoming FROSTI RIN tests that will be conducted within the next few weeks. While waiting for the rest of the equipment to arrive to perform the full-scale tests, I have additionally moved the FROSTI under the shelf above the optical table, where it will stay for the meantime. As always, please use caution when in the cleanroom. Aside from the FROSTI, the IR photodetectors that will be used for the test are delicate and costly to replace.

  401   Thu Jul 11 15:53:39 2024 LukeUpdateVACRGA line upgrade

[ Luke, Jon ]

Started work at 11:00

As mentioned in my previous post the RGA was not clearing the table because of a tilt in the cross. So I removed the 90 deg elbow, loosened the bolt securing the Tee to the ZLR, and removed the cross from the gate valve. I then spun around the Tee on the bottom so that the cal leak would be pointing in the right direction and connected the rotating 2.75" flange of the cross to the gate valve. I then added the small turbo pump to the top of the cross. 

Then with the help of Dr. Richardson, we made some adjustments to how the Tee was oriented with respect to the cross and how the cross was with respect to the table. So that the cal leak and RGA would fit on the table. After that we made some changes to the bolting of the ZLR to reducing cross replacing the 2.00" bolts and nuts with 1.75" bolts and nut plates. We did face some difficulty with half of the 2.00" bolts which required a bit of torque to get them out. 

Finished work at 2:20 

 

Things to do:

Before we start pumping down the system again Dr. Richardson wanted two other changes to be made. To replace the 2.75" to 1.33" conical reducer with a zero length reducer. He also wants the bolts that hold the main turbo pump to be replaced with nut plates. 

I plan on starting this work on Friday (7/12) before pumping down over the weekend

  427   Fri Aug 23 16:08:32 2024 LukeUpdateVACRGA line leak testing

[Luke, Luis, Jon, Tyler]

On the 22nd Dr. Richardson showed Luis, Tyler and I how to preform a leak test with the RGA. We did the initiall test and found a few leaks two were particuarly bad highlighted in orenge below. To try and remidy this we planned on replacing the copper gaskests on the leaking flanges. We then began taking the two problem flanges off, but seven of the eight bolts holding on the turbo pump were over tightened and had seized. So after we got them off we postponed the rest of the work to the next day.

On the 23nd Luis and I reattached the badly leaking flanges with new copper gaskets. We then preformed the Helium leak test with the RGA. As seen in the table below we weren't able to majorly changed the leaks in the two flanges.

 

Connection Initial  After disassembly
Tee - RGA 3.1e-9 -> 2.4e-9 9.2e-9
Tee - Cal leak Low Low
Tee - ZLR (2.75"-4.5") Low 9.2e-9
ZLR (2.75"-4.5") - Reducing Cross 2.1e-8 -> 1.9e-8 3.6e-8 -> 9.3e-9
Cross - Elbow Low 1.2e-9
Elbow - Pressure sensor Low 2.9e-9
Cross - Turbo pump (small) 2.1e-8 -> 3.1e-8 6.9e-8 -> 2.2e-8
Cross - Gate valve Low Low
Gate valve - Port 2.4e-9 -> 2.2e-9 1.2e-9
Port - ZLR (6.0"-8") 1.1e-9 N/A
ZLR (6.0"-8") - Turbo pump (large) Low N/A
Port - Pressure sensor Low N/A
Port - Up to air valve Low N/A
Port - Blank Low N/A
Port - Feed though  port Low N/A
Lid Low N/A

 

  429   Tue Aug 27 15:01:26 2024 LukeUpdateVACRGA line leak testing

[Luke, Tyler]

On the 27th Tyler and I ran the RGA leak test again with the electron multiplier on. These were the leaks we measured. The chamber's overall pressure was at ~6e-8 torr. 

Connection Leak rate (torr)
Tee - RGA 3.92e-11 (very low)
Tee - Cal leak 4.77e-11 (very low)
Tee - ZLR (2.75"-4.5") 4.97e-11 (very low)
ZLR (2.75"-4.5") - Reducing Cross 2.45e-9   (low)
Cross - Elbow 7.36e-11 (very low)
Elbow - Pressure sensor 2.36e-11 (very low)
Cross - Turbo pump (small) 8.07e-9   (lowish)
Cross - Gate valve 4.02e-11 (very low)
Gate valve - Port 2.27e-9   (low)
Port - ZLR (6.0"-8") 1.11e-9   (low)
ZLR (6.0"-8") - Turbo pump (large) 1.00e-10 (very low)
Port - Pressure sensor 1.05e-10 (very low)
Port - Up to air valve 1.08e-11 (very low)
Port - Blank 5.58e-10 (very low)
Port - Feed though port 1.21e-11 (very low)
Lid 1.11e-11 (very low)

 

 

  400   Wed Jul 10 17:31:07 2024 LukeUpdateVACRGA line disassembly and upgrade

[ Luke, Cynthia, Michael, Xuesi, Anthony ]

Started work around 12:45

We vented the chamber first and once it reached atmospheric pressure we started taking apart the RGA line.

We removed the parts in this order: Calibrated leak, RGA, Pressure gauge, 2.75" Blank on Tee, 2.75" Tee, all 1.33" Blanks on the cube, 4.5" feed through port, and finally the cube. Everything went smoothly after every part was taken off we covered the ends in Aluminum foil to maintain cleanliness. 

We then started the assembly of the new line. The parts were added in this order: Reducing cross, ZLR, Tee, Cal leak, RGA, 90 deg Elbow, and Pressure sensor.

We left off the Turbo pump as of now because we weren't able to find a 1" post not in use and we didn't want to put too much weight on the cross. We also noticed that the RGA might not fit on its probes because of a slight tilt to the cross and by extension the Tee. If this ends up being a problem we might need to remove all the parts connected to the cross so that we can reposition it so that the 2.75" rotating flange is connected to the gate valve.

Ended work around 4:00

  261   Fri Nov 10 08:32:34 2023 JonUpdateVACRGA experiments
I ran a 3-minute degas cycle of the RGA filament for the first time yesterday (in this process, the filament gets very hot in order to "boil off" settled particulate). I was surprised to see the pressure (of not just the RGA volume, but also the main volume) rise from 2e-8 to 5e-6 torr.
 
This observation, plus the rise in pressure seen every time the filament is activated for an RGA scan, indicates we have significant particulate settling on the RGA filament. This may be systematically biasing RGA scans taken within a short time (~15 minutes) of turning on the filament.
 
I have two ideas to reduce particulate on the RGA. However, before implementing these, I first want to consult with the vacuum experts at LIGO Lab.
  1. Run a second RGA degas cycle, but next time with the main volume valved off with only the RGA volume being pumped (through the bypass line). This will prevent "boiled off" particulate from entering the main chamber and will also increase the pumping rate for the RGA volume, reducing the amount of particulate that resettles on the RGA filament.

  2. I also noticed that the SRS manual states that the filament is designed to be long-lived and it is recommended to leave it on any time the RGA is on. By leaving the filament on all the time (i.e., hot), we could reduce the amount of particulate that is evidently settling on it between scans. I am checking whether LIGO Lab does this in their own chambers.
  266   Tue Nov 14 17:21:40 2023 JonUpdateVACRGA best practices

As a follow up ELOG 261, I have received advice from one of the vacuum experts at LIGO Hanford on best practices for our RGA:

  1. For future RGA degassing, definitely keep the main volume isolated, since it could contaminate the main volume with everything that just got cooked off of the filament. So the procedure should be to (i) close both gate valves, (ii) ensure the angle valve on the bypass line is open, (iii) initiate the degas cycle on the RGA, (iv) pump the RGA volume through the bypass line, until its pressure returns to its pre-degas level.

  2. Repeated degassing of the filament will definitely wear it down much faster, so do this operation sparingly.

  3. As long as the pressure of the RGA volume is in the UHV range (~1e-9 torr), best practice is to leave the filament on. This keeps it hot which helps prevent particulate from settling on it. However the electron multiplier should stay off when not actively taking scans, as it will wear down if left on all the time.

  96   Wed May 10 10:49:34 2023 AidenUpdateGeneralRGA Software
[Aiden, Cao] Went over how to use the RGA software, how to change the graph units, scaling and mass detection. Also went over how to remove the RGA from the vacuum system as well as procedure for turning it on.
  440   Mon Sep 16 13:51:23 2024 Luis MartinUpdateVACRGA Scans

[Luis, Luke}

Three RGA scans were taken. The improvement in the amount of HC in the vacuum is visible across the different measurements. Images are attached.

  448   Wed Sep 25 09:06:09 2024 Luis MartinUpdateVACRGA Scans
RGA Scan Comparison

The following images compare the RGA scans from 9/23/24, after the first bake with the new vacuum system, with those from 3/14/24, after bake 12 with the old system.

The first image shows a graph of the raw data and includes the calibrated leak for both curves. As we can see, our new system meets LIGO standards of cleanliness.

The second graph contains the plot of the normalized data.

  459   Wed Oct 16 13:58:59 2024 Luis MartinUpdateVACRGA Scan

The following figure displays data acquired on 10/09, and it shows that we are no longer below the cleanliness standard. Also, the system's pressure went up to 1.9x10-8 Torr (approximately 7x10-9 Torr previously). This might be due to a leak somewhere in the system. More tests will be performed later.

  463   Wed Oct 23 12:08:36 2024 Luis MartinUpdateVACRGA Scan

[Luke, Luis, Mary, Ma]

On 10/22/24 Luke, Ma, Mary and myself ran a RGA scan, the results are displayed below. The overall pressure of the vacuum was 2.0e-8 and the temperature readings were 26C for the RGA and 25C for the main volume.

As we can see, the vacuum is passing cleanliness standards again.

  469   Wed Nov 6 13:48:55 2024 LiuUpdateInterferometer SimulationsQN modeling update
Slides
  405   Mon Jul 15 13:30:49 2024 Luke UpdateVACProblem with 2.75" to 1.33" zero length reducer
Last Friday while checking the depth of the ZLR I got one of the screws stuck. Today I tried a couple things to get it out. First I tried a few different pliers to be able to grip lower on the screw this didn't work. So I switched to the other method of drilling a small hole to see if maybe the threads would pull away from the walls of the hole a bit. This kind of worked as seen in the picture below I was able to remove most of the screw but there is a bit still stuck which I was not able to remove and I didn't want to use a larger bit for fear of damaging the tapped hole.
  255   Mon Nov 6 11:29:24 2023 TylerUpdateElectronicsPreliminary RTD Calculations, RP Software Update

Preliminary RTD calculations are shown below, given an input of 10 V and desiring a few mA of current. It looks like R_ref should be at least 1 kOhm (refer to plots/circuit below), keeping in mind we need to have <10 V input for the ADC.

RP: The Red Pitaya Software was updated to OS 2.00. All examples on the RP website should run without issue.

  185   Tue Aug 1 12:48:41 2023 AidenUpdateCleanroomPre Filter Change

Changed the pre filter inside of the 3 stage HEPA system next to the soldering station. It was rather dirty and I have attached images with a clean filter on the left and the used one on the right. I reset the pre filter age on the system. I tried to see if I could tell if the HEPA filter was dirty but I could not see it. I did not reset the age of the HEPA or UV stations. They are currently 378 days old.

  137   Wed Jun 28 15:58:56 2023 Shane, CaoInfrastructureVACPower trip problem remains, source of smoke is insulation
[Shane, Cao]

With the new change in wiring configuration described in elog 136, we tried to power up the heaters for baking the vacuum chamber again.

Given that we were worried about the turbo pump overheats, we set the setpoints of of bother high temperature controller and PID controller to be 120 deg C before turning the heaters on

1. Evidence of smoke originating from CoolSkin insulation

We then removed most of the CoolSkin insulation on the Pump and RGA lines ( apart from the one around the flexible bypass line connecting the two ) (see image Pumpline_afterRemoveInsul and RGAline_afterRemoeInsul) . Upon removal of the insulation, we noticed that the insulating foam melted onto the heating tape (see image MeltedInsulation1 and MeltedInsulation2). This is the first indication that the smoke had most likely coming from the insulating foam itself

Once we started baking, upon reaching 80 degree range. We observed no smoke at the location that we removed the insulation. However, We observed smoked coming from underneath the insulation around the flexible pipe, and not from the velcro areas.

What could be causing this, given that the maximum operating temperature of the insulation is 200 deg C? Most likely, the heating tape is much hotter than we think it is. But given that the temperature sensor readout is much lower than 200 deg C, it's likely that this is due to poor thermal contact and it takes a while for sensor to reach a thermal equilibrium with the heating tape. Here, I suggest we should implement the following:
  • We should look into usingsome form of thermal tape (if possible to secure the temperature sensors)
  • Unfortunately or controller does not allow programming process, we will have to implement manual temperature stepping, emulating ramping process over the first hour, until slowly reach 120 deg C
  • OR Tune the PID controller coeffs, especially P and I for longer rise time and settling time

2. The heaters still trip our power

Upon reaching 80 deg C,our main power trip. Unfortunately I don't know how to reset this. Do we need to contact facility on this? Reading elog 136, I noticed that both controllers are connected to the same circuit LP3B 6, which is the same circuit the some of the fan-filters and LED light panels of the cleanroom connected to. From the elog, the circuit has a 20 A limit . An max operation, the 2 heater controllers draw 30 Amps, approx 7 Amps for the fan-filters, and another 1.5 A for LED panel. The combination of these equipment must have overload the circuit and tripped it . Currently half the fans + lights are off in the cleanroom are off due to power trip. Here, I would make a suggestion that each heater controller should be connected to a separate circuit . Currently we LP3B 7 (same side next to LB3B 6) and LB3B 4 (opposite side of the rail) having no equipemts connected to them, but will require cable extensions.
  330   Tue Feb 20 08:01:30 2024 JonInfrastructureGeneralPower and network equipment installed in 1129 rack
[Jon, Tyler, Pooyan, Luis, Luke, Peter]

On Thursday we installed the power conditioning/distribution equipment and networking equipment in the new 1129 rack. The hardware is identical to the setup in the 1119 rack and includes:

  • Tripp Lite SU5KRT3UTF - 208V, 5kVA on-line UPS with 120V transformer
  • CyberPower PDU20M2F12R - metered power distribution unit, (14) NEMA 5-20R
  • Ubiquiti USW-Pro-48 - 48 port 10Gbps network switch

The UPS is connected to a 208V NEMA 6-30R outlet in the overhead cable tray, which is on the building's "standby" (backup power) circuit. An 8-ft L6-30 extension cord has been ordered to permanently run the power cable through the cable tray.

The network switch will be connected to a Cat6 cable that was recently run by ITS from the 1119 rack, allowing the lab's LAN to be extended into 1129. This Ethernet link remains to be tested.

Quote:

Server Rack Installation

A new Tripp Lite 42U open-frame rack was laid in place in 1129 and anchored to the floor (see attachment 1). This rack will house all of our general-purpose and simulation computers, which will be relocated from the 1119 rack at a later time.

  165   Tue Jul 18 16:35:06 2023 PamellaUpdateFLIRPlot-Data with the new configuration without the mask and reflector.
[Pamella]
  • I was able to plot the first graph for a result between the six different positions on the screen, for now we can see the behavior of the heater temperature in a Gaussian graph with combination data between the six files.
  • To do: Tyler gave me some ideas today to improve the plot. So I'm going to change the code to have insulation on the values for just the heater ("insulation") and I'm going to plot after this insulation data as well I'm going to get more data and compare with more data for the same position.
  • I was using the data than I got last week and I shared on Elog (151) and we can see on this quote

Quote:
[Pamella] I started collecting data by moving the camera FLIR and covering all six positions on the screen (2x3). I was looking and taking snaps for more than one hour and a half. I'll repeat this one more time to make sure we have enough data to do analysis. I attached snap data below. This images is processed on python code.

 

  431   Thu Aug 29 16:39:34 2024 LukeUpdateVACPhotos of heater tape
  94   Tue May 9 15:49:20 2023 JonInfrastructureVACPermanent cable routing

Today I brought in a fresh supply of zip ties (we now have 1500 in the tool chest) and used them to permanentize the cable routing for the gauges, pumps, and RGA.

I also brought and installed a 3-foot 15A extension cable for powering the scroll pump. Installing the cable required shutting down the pumps, which I did and then reverted via the following procedure:

  1. Close the 4.5" gate valve, 2.75" gate valve, and the bypass line angle valve.
  2. Shut down the turbo pump.
  3. Shut down the scroll pump.
  4. Unplug the scroll pump and install the extension cable.
  5. Power on the scroll pump.
  6. Power on the turbo pump.
  7. Open all three valves.

Incidentally, before I started, I noticed that the pressure in the main volume had reached 7E-7 torr, which is lower than the pressures seen last week. The system quickly returned to this pressure after I restarted the pumps.

  12   Mon Nov 28 18:10:23 2022 shaneUpdateELOGParticle counts in the clean room
Particle count stats for the clean room Nov 28, 2022: Took 10 sample runs in each of 5 regions in the clean room (5 runs per region with a person inside the clean room for the measurement, and 5 runs per region without anyone in the clean room for the measurement), for a total of 50 samples taken. Sample time was 60 seconds. Overall clean room average particle count for the size ranges are as follows: 0.3 micrometers- 3405.76 (room occupied), 974.92 (room empty) 0.5 micrometers- 409.72 (room occupied), 409.72 (room empty) 1.0 micrometers- 1102.2 (room occupied), 282.6 (room empty) 2.5 micrometers- 692.32 (room occupied), 183.68 (room empty) 4.0 micrometers- 254.28 (room occupied), 84.72 (room empty) 5.0 micrometers- 141.24 (room occupied), 84.72 (room empty) 7.0 micrometers- 56.48 (room occupied), 84.72 (room empty) 10.0 micrometers- 42.36 (room occupied, 42.36 (room empty) More statistics (including individual stats on the 5 regions within the clean room) attached.
  64   Tue Apr 4 16:52:08 2023 JonUpdateCleanroomParticle counter docking station
Due to the problems we have encountered trying to serially communicate directly with the Met One DR-528 particle counter, I went ahead and ordered the add-on communications/charging dock. The dock "ethernetizes" the serial communications by wrapping them in TCP packets and transmitting them over the lab network. This will allow our Python code to communicate using the standard Internet sockets package, rather than PySerial, PyNut, etc. the docking station arrived today and I delivered it to the lab. I left it laying next to the particle counter in the electronics rack.
  71   Wed Apr 12 16:17:50 2023 shaneUpdateGeneralParticle Counter moved
With the added height of the new docking station, the particle counter no longer fits under the Windows monitor in the electronics rack and has been moved to the desk in the corner of the lab.
  235   Mon Oct 9 11:29:37 2023 TylerUpdateElectronicsPSD/CSD Plot Updates
Continuing from Sophia's SURF Project this summer: Plotting the Power-Spectral Densities (PSDs) and Cross-Spectral Densities of two signals. A continued issue that has been observed in the plots is the random "jump" of one PSD curves. Below, a 1.4 kHz signal is driven with a magnitude of 0.7 Vpp, and connected to the two output ports of the Red Pitaya via an SMC T-Adapter. At the moment, I anticipate that this bug might have something to do with the Real-Time GUI code being used, since this hasn't been observed when running the calculations without it (see below).
  39   Wed Mar 1 21:27:20 2023 JonInfrastructureCleanroomOver-table shelf height raised

Jon, Cao

Today we raised the height of the shelf overhanging the cleanroom laser table by 8 inches. This was done to create more vertical clearance between the top-loading vacuum chamber and the bottom of the shelf. The added clearance should make both removing the chamber lid and inserting large parts easier.

The procedure required unmounting the shelf and removing all eight vertical support posts (1" x 1" x 18.5" pieces of 80/20 unistrut). The support posts were taken to the machine shop and cut, retapped, and cleaned (coarsely, with IPA wipes) prior to reinstallation. We took care to minimize the contamination introduced into the cleanroom, but some amount of particulate from disturbing the shelf was unavoidable.

This work is completed, and the cleanroom is now ready for final cleaning (HEPA vac, mopping, and wiping down of all surfaces including the softwalls).

  16   Mon Jan 23 17:26:15 2023 Peter CarneyUpdateGeneralOven cleaning
Aiden and Cao Turned on the oven to 120 deg C for 12 hours. After 12 hours, put it at 200 deg C for 48 hours.
  17   Thu Jan 26 18:58:25 2023 AidenUpdateGeneralOven Heating
Aiden cleaned the oven with methanol again and set the oven to 260 degC for 12 hours.
  338   Fri Feb 23 18:03:27 2024 TylerUpdateFLIROptical Test Setup in Cleanroom
[Tyler, Xuesi]

The FLIR and test mass stand-in have been transferred into the cleanroom. A software test will be run as soon as we get an ethernet cable long enough to reach into the cleanroom where the camera is set up. Once this is finished, the FLIR will be moved aside for construction of the FROSTI! When completed, the camera will be placed back into position for in-air optical testing.

  9   Tue Jul 26 14:10:35 2022 CassidyUpdateCamerasOptical Post Replacement and Realignment
Today I replaced the 3" optical post that the camera rests on with a 2" optical post in order for the screen to correctly fill out the camera's FOV. The 3" post is now in the glass optics cabinet next to the FLIR camera configuration box, wrapped in the protective materials from the 2" post for safekeeping.

There were no issues with the physical replacement of the post, except that the fork clamp on the post needs to be on one of the perpendicular, not diagonal, axes in order to be secure. I chose the front axis (towards the screen) as before in order to easily access the alignment knobs.

To align, I followed the same process as last time except for a more purposeful original rough alignment. For alignment purposes, the visual camera was used. For the first rough alignment, I pulled the camera as far back as possible on the x axis (with the z axis roughly centered), then moved the entire stage setup back until I could just see both the top and bottom edge of the screen. Then, I set the z-axis to an extreme in order to use the edge of the screen to align the rotational and y-axis pieces for the fine alignment.

For the fine alignment, starting with the z and x axis at extremes, I began by aligning the rotational axis. To do this, I used the gaps between the top of the screen and the camera window on the far left and right of the image. When these gaps were equal I knew the rotation was adequately set. Then, I set the y-axis so that the pattern was centered. If the gaps were no longer even, I redid the rotation alignment and ditto with the y axis until both were set. This resulted in a rotation of about two degrees and a y axis at just under 3.5.

To set the z and x axis, I centered the z-axis using the top and bottom of the screen, which should both be visible if the rough alignment was done correctly. Then, I adjusted the x axis by pushing it forward until the top and bottom of the screen were just out of the frame. As with the rotational and y-axis, I iteratively fine tuned the x and z axis until both the image was centered in the z axis and only the screen was in view. This resulted in a z-axis value of just over 5.5 and an x axis value of nearly 1.75.

Pictures are included of all alignment knobs and the new post/stage setup!

  424   Mon Aug 12 17:09:04 2024 Cynthia UpdateInterferometer SimulationsO4 vs O5 cavity scans with ITM plume guess or ETM
So far the proposed solution for what to use for O5 ITM mirror for SIS simulations is either the plume guess file or using the O5 ETM mirror for ITM. I had ran a cavity scan for both of these possibilities and it seems like the results produced are fairly different. The next step is most likely moving on to adding the Frosti effects including both of the proposed possibilities, and before this, a few confirmations and verifications are needed using similar previous studies to make sure my code produce the right result.
  392   Mon Jul 1 15:19:42 2024 Cynthia UpdateInterferometer SimulationsO4 and O5 mirror cavity scans with thermal effect
  67   Tue Apr 11 13:15:40 2023 CaoInfrastructureClean &amp; BakeNitrogen gas tank replaced
The nitrogen gas tank has been replaced with a new unit. The new tank is ultra pure nitrogen (>99.9% nitrogen). The new tank has been placed and secured to the rack where the old one is; cap is removed and regulator is reinstalled onto the new tank.
  26   Fri Feb 10 16:34:45 2023 Huy Tuong CaoInfrastructureClean & BakeNitrogen gas tank ready to use
Cao,

Today I fixed the final bit related to the nitrogen gas tank, which is to apply sealing tape to M-NPT connector of the hose to prevent leakage (file: AirGunSealed.jpg)
After application of the tape, no audible leak can be heard from connection between the hose and the air gun.

The general operating procedure for the gas tank is as following:

  1. Turn the regulator (blue handle) anti-clockwise still it's loose
  2. Turn the valve on nitrogen as tank anti-clockwise, immediately the RHS meter of the regulator would jump to approx 2000 psi. This is the standard pressure for high pressure gas tank
  3. Turn the regulator clock-wise slowly until the pressure one the LHS meter face reads approx 60 psi. This is sufficient for drying parts with. At this point, the flow pressure still should register zero
  4. Press the trigger on the air gun, a high pressure air flow should come out and the flow meter should increase
  5. When finished, close the gas tank valve, turn the regulator anti-clockwise, then press the air gun trigger to release gas left in the hose/gun

  412   Fri Jul 26 17:25:42 2024 JonInfrastructureComputersNew workstation ws4 installed in 1129

Today I installed the second desktop workstation in 1129. The new machine is an Intel NUC13ANHi5, with a 12-Core Intel i5-1340P CPU, 32GB DDR4 RAM, and a 1TB SSD.

I loaded it with a fresh installation of Debian 12 and installed the LIGO CDS workstation (control room) tools. It is assigned the hostname ws4 and and the static IP address 192.168.1.19 on the local lab network. Like the other CDS workstations, there is just one user account accessible with the usual credentials.

The machine is fully set up and ready for use.

  379   Thu Jun 20 18:01:11 2024 JonInfrastructureComputersNew workstation ws3 in 1129
I have repurposed a spare Intel NUC to serve as the first of two planned workstations in 1129. Today I set it up with a fresh installation of Debian 12.5, assigned it the static IP address 192.168.1.15, and installed the LIGO CDS workstation packages. It is assigned the host name ws3. Temporarily, the mouse is borrowed from ws1 in 1119. We need to order another mouse as well as a 25-ft Ethernet cable for connecting the workstation to the 1129 switch, via the ceiling.
  385   Wed Jun 26 15:33:41 2024 JonInfrastructureComputersNew workstation ws3 in 1129

Set-up of the first CDS workstation for 1129, ws3, is complete and the machine is ready for use. The login credentials are the same as the other lab machines.

All that now remains is to install a permanent cable tray for running the new Ethernet cables between the electronics rack and bench (they are currently dangling from the suspended lights).

Quote:
I have repurposed a spare Intel NUC to serve as the first of two planned workstations in 1129. Today I set it up with a fresh installation of Debian 12.5, assigned it the static IP address 192.168.1.15, and installed the LIGO CDS workstation packages. It is assigned the host name ws3. Temporarily, the mouse is borrowed from ws1 in 1119. We need to order another mouse as well as a 25-ft Ethernet cable for connecting the workstation to the 1129 switch, via the ceiling.

  198   Wed Aug 9 11:32:56 2023 JonInfrastructureGeneralNew power cables

I delivered new NEMA 5-15 (120V / 15 A) power cables to the lab for the following items:

  • WS2 (cleanroom) cart - 10ft cable
  • Electronics workbench overhead LED - 10ft cable
  • Both PI heater controller sets - (2) 6ft cables

I installed the new cables on the WS2 cart and the workbench myself, and left the two 6ft cables (as pictured below) for Aiden to install on the PID controllers after the current bake is finished.

  135   Tue Jun 27 15:18:26 2023 PamellaUpdateFLIRNew data collection
    [Pamella]
    Yesterday, I did a new data collection. I could get a better data in this time and I realized than I need use some angle on the reflector for got a better shot. I need do that because the FLIR camera just is able to get the triangle shape for complete if I keep exactly in same line for center point on the camera but for the data now I need move the refletor to go up and go down. So wasn't working very well if I keep the reflector without angle.
    Now I am using the refletor with a angle. In the more high part I turn the mask for look the table and in the lower part I turn the mask to look up. I attached a photo below for this configuration. Also the processes to get the data was the same than I using last time, the only diference is now I just moved the pillar after get data for high position and lower position for the same reference point on the triangle shape.
    Note: In most data it is impossible to keep the same parameter for current, voltage and temperature. Most have a small variation but not a big difference. For example: I got the temperature in the first position 46.8 °C and in the second position I got 47.1 °C, it's just an example. It's just so we know that we don't have the exact same parameters all the time. In my opinion this is not a problem because it is just a small variation.
    The process to get data
  • 09:35 am: Turned on the device (current on). I wanted for 30 minutes before start get data.
  • 10:05 am: Started taking snap on position one (Reference point: -0.10, 0.050). Parameters:0.11A,1.7V,46.8°C
  • I took four snap on the same position for compare after on data analyzes. I just wanted one minute break between the snaps. I did the same for every position.
  • 10:15 am: Started taking snap on position two (Reference point:-0.10,-0.050 ). Parameters: 0.11A,1.7V,47.1° C
  • 10:22 am: Started taking snap on position three (Reference point:0.00 ,0.050). Parameters: 0.11A,1.6V,48.1°C
  • 10:26 am: Started taking snap on position four (Reference point: 0.00,-0.050). Parameters:0.11A,1.6V,48 °C
  • 10:32 am: Started taking snap on position five (Reference point: 0.05,-0.050). Parameters:0.11A, 1.6V, 48°C
  • 10:37 am: Started taking snap on position six (Reference point: 0.05,0.050). Parameters: 0.11A,1.7V,47.6 °C
  • We can see in the photos attached below every position also I am working in the analyzes.
  123   Tue Jun 13 21:33:46 2023 PamellaUpdateGeneralNew cabinet for PPI
[Pamella and Dr.Richardson]
    Dr. Richardson installed the new cabinet outside the room for the PPI equipments, and then I wiped all surfaces inside and outside of the new cabinet.
    Dr.Richardson and I have finished organizing the PPI within the new cabinet. Also we have new supplies of gloves, and will likely have more supplies for other PPIs soon.
  157   Fri Jul 14 16:49:42 2023 PamellaUpdateFLIRNew bridge and calibration data
[Pamella]
    Aiden 3D printed a new bridge for the heater and I installed the new bridge yesterday.
    I started collecting data to plot a calibration with the heater. I'm doing measurements with current and the thermocouple (thermometer) to compare with FLIR measurements and have a good calibration.
  367   Mon May 13 14:48:27 2024 AidenUpdateVACNew Vacuum Chamber Design
I created a new model for the vacuum chamber based on the ideas from last week's meeting.

It should be noted that we can not have the zero length reducer and the gate valve on the same arm as they both have blind tapped holes. We need to decide if we want the gate valve or not as if we do, we will need to use the 3 inch long reducer.

Important Measurements:

From the back of the flange to the back of the RGA: 25.25 in

Height from bottom of the blank to the bottom of the chamber: 2.75 in

  398   Mon Jul 8 17:01:45 2024 ShaneUpdateCDSNew CyMAC internal layout
[Jon, Shane] Internal layout of CyMAC has been updated (labeled image attached) to accommodate the replacement of the two ribbon cables. Looking down on the chassis from the front, and going from left to right, the new placement is as follows: BIO card, DAC adapter board, ADC adapter board, DAC card, ADC card. NOTE: As part of ADC-DAC loopback testing, we're disconnecting from the FROSTI readout chassis and using the cables to connect directly from ADC input channels to DAC output channels . Initial testing confirmed functionalility of all 32 ADC input channels and the first 8 DAC output channels.
  108   Tue May 30 14:51:27 2023 PamellaUpdateFLIRNew 3D mask - Bigger triangles shapes.
[Pamella]
    Change the 3D mask
  • Started removing the old mask in the reflector.
  • Started cutting the new aluminum lid for the new 3D mask and assembling in the 3D mask.
  • Started doing the new cable connections for the light.
  • Started testing the resistance in the new cable connections. The multimeter show us 14.2 Ω.
  • Started attaching the mask with the light and the thermometer sensor.
  • Started assembling the 3D mask in the reflector.
  • Started the initial tests.
  • 2:00 pm: Started testing the new mask. Parameters: 1.4 V 0.1A and 27 C
  • 2:38 pm: Started taking snap. Final parameters:1.4 V 0.1A and Temperature: 39.9 C
  • Started doing some adjustments in the triangles shapes for the futures tests.
  172   Tue Jul 25 15:35:14 2023 ShaneUpdateElectronicsMore chassis moved
Finished basic assembly of binary input and output chassis today, and moved one to top shelf of work bench. The other is in corner of work bench (image attached). They are delicate, so please do not move them or place anything on top of them.
  91   Wed May 3 19:03:47 2023 Julian,Pamella and CaoPhysicsVACModify vacuum asssembly and install RGA
[Pamella, Julian, Cao]
    Today we started re-configuring the vacuum chamber components.
    Particle count
  • 10:45 am : Starting the particle count in the clean room.
  • 11:13 am : Finished the particle count in the clean room.
  • Zone 3 :
    • 0.3 u: 2535
    • 0.5 u: 1413
    • 1.0 u: 789
  • Zone 4 :
    • 0.3 u: 457
    • 0.5 u: 290
    • 1.0 u: 207
      Starting the reconfiguration.
    • 11:21 am: Started removing up-to-air valve
    • 11:30 am: Finished removing up-to-air valve.
    • 11:33 am: Started removing calibrated Ar Leak and the elbow.
    • 11:35 am: Finished removing calibrated Ar Leak and started assembling the up-to-air valve.
    • 11:47 am: Finished assembling up-to-air valve.
    • 11:48 am: Started removing magnetron gauge.
    • 11:55 am: Finished removing magnetron gauge.
    • 11:57 am: Started installing the elbow and calibrated Ar Leak and started removing the RGA probe
    • 12:13 pm: Finished installing the elbow and calibrated Ar Leak.
    • 12:20 pm: Break for lunch.
    • 01:25 pm: Come back from lunch break.
    • 01:30 pm: Started removing RGA line.
    • 01:39 pm: Finished removing RGA line.
    • 01:39 pm: Started removing gate valve [RGA line] and finished removing gate valve.
    • 02:00 pm: Started installing gate valve in the new position.
    • 02:08 pm: Fished installing gate valve [RGA line].
    • 02:09 pm: Checked the screws in the elbow to gate valve. [RGA line].
    • 02:28 pm: Finished checking the screws in the elbow to gate valve [RGA line].
    • 02:29 pm: Started installing RGA line.
    • 02:39 pm: Finished installing RGA line.
    • 02:50 pm: Started installing magnetron gauge.(In this part we assembled gauge with the used gasket)
    • 03:02 pm: Finished installing magnetron gauge.
    • 03:04 pm: Started installing RGA probe [RGA line].
    • 03:13 pm: Finished installing RGA probe [RGA line].
    • 03:15 pm: Connected the cables to the magnetron gauge.
    • 03:20 pm: Started the testing in the vacuum chamber.
    • 04:30 pm: Started installing the RGA 200 and connected the cables (power cable and DB9 cable).
    • 04:52 pm: Finished installing the RGA 200 and connected the cables (power cable and DB9 cable).
    • 04:53 pm: Started testing the RGA connections. Logrus is able to recognize and connect to RGA unit. We are leaving the turbo pump on for a few hours before checking back for pressure readouts.
    • 05:00 pm : Starting the particle count in the clean room.
      1. Zone 3 :
        • 0.3 u: 2244
        • 0.5 u: 997
        • 1.0 u: 207
      2. Zone 4 :
        • 0.3 u: 2993
        • 0.5 u: 1579
        • 1.0 u: 498
    • 05:30 pm : Finished the particle count in the clean room.
    • 05:34 pm: Test pressure readout from the gauges.
      1. Channel 1 : 1.06E-5 mbar
      2. Channel 2 :8.89E-6 mbar
      3. Channel 3 :5.0E-4 mbar
    • 05:59 pm: Test pressure readout from the gauges.
      1. Channel 1: 9.09E-6 mbar
      2. Channel 2: 7.75E-6 mbar
      3. Channel 3: 5.0E-4 mbar
  111   Wed May 31 16:18:41 2023 AidenSummaryGeneralMock FROSTI
Finished assembly on the Mock FROSTI so it is ready for the fit test at LIGO lab.
  397   Mon Jul 8 12:26:10 2024 MichaelUpdateInterferometer SimulationsMinimizing Astigmatic Effects in the SRC of LIGO
This is the first look and analysis of the effects of astigmatism in the aLIGO optical layout which can lead to mode mismatch and therefore increased losses into higher order modes. Specifically I am currently looking at measuring the effect of changing the radii of curvature of the SRC mirrors https://docs.google.com/presentation/d/1qhIehqyNukg4g8S2fqfQZz83yr9aB76tEa6fn2J-TrM/edit?usp=sharing
ELOG V3.1.3-7933898